| Step | Hyp | Ref
 | Expression | 
| 1 |   | elfv 5327 | 
. . 3
⊢ (x ∈ (F ‘A)
↔ ∃z(x ∈ z ∧ ∀y(AFy ↔
y = z))) | 
| 2 |   | bi2 189 | 
. . . . . . . . . 10
⊢ ((AFy ↔ y =
z) → (y = z →
AFy)) | 
| 3 | 2 | alimi 1559 | 
. . . . . . . . 9
⊢ (∀y(AFy ↔ y =
z) → ∀y(y = z →
AFy)) | 
| 4 |   | vex 2863 | 
. . . . . . . . . 10
⊢ z ∈
V | 
| 5 |   | breq2 4644 | 
. . . . . . . . . 10
⊢ (y = z →
(AFy ↔
AFz)) | 
| 6 | 4, 5 | ceqsalv 2886 | 
. . . . . . . . 9
⊢ (∀y(y = z →
AFy) ↔
AFz) | 
| 7 | 3, 6 | sylib 188 | 
. . . . . . . 8
⊢ (∀y(AFy ↔ y =
z) → AFz) | 
| 8 | 7 | anim2i 552 | 
. . . . . . 7
⊢ ((x ∈ z ∧ ∀y(AFy ↔ y =
z)) → (x ∈ z ∧ AFz)) | 
| 9 | 8 | eximi 1576 | 
. . . . . 6
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃z(x ∈ z ∧ AFz)) | 
| 10 |   | elequ2 1715 | 
. . . . . . . 8
⊢ (z = y →
(x ∈
z ↔ x ∈ y)) | 
| 11 |   | breq2 4644 | 
. . . . . . . 8
⊢ (z = y →
(AFz ↔
AFy)) | 
| 12 | 10, 11 | anbi12d 691 | 
. . . . . . 7
⊢ (z = y →
((x ∈
z ∧
AFz) ↔
(x ∈
y ∧
AFy))) | 
| 13 | 12 | cbvexv 2003 | 
. . . . . 6
⊢ (∃z(x ∈ z ∧ AFz) ↔ ∃y(x ∈ y ∧ AFy)) | 
| 14 | 9, 13 | sylib 188 | 
. . . . 5
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃y(x ∈ y ∧ AFy)) | 
| 15 |   | 19.40 1609 | 
. . . . . . 7
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → (∃z x ∈ z ∧ ∃z∀y(AFy ↔ y =
z))) | 
| 16 | 15 | simprd 449 | 
. . . . . 6
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃z∀y(AFy ↔ y =
z)) | 
| 17 |   | df-eu 2208 | 
. . . . . 6
⊢ (∃!y AFy ↔ ∃z∀y(AFy ↔ y =
z)) | 
| 18 | 16, 17 | sylibr 203 | 
. . . . 5
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃!y AFy) | 
| 19 | 14, 18 | jca 518 | 
. . . 4
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → (∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)) | 
| 20 |   | nfeu1 2214 | 
. . . . . . 7
⊢ Ⅎy∃!y AFy | 
| 21 |   | nfv 1619 | 
. . . . . . . . 9
⊢ Ⅎy x ∈ z | 
| 22 |   | nfa1 1788 | 
. . . . . . . . 9
⊢ Ⅎy∀y(AFy ↔
y = z) | 
| 23 | 21, 22 | nfan 1824 | 
. . . . . . . 8
⊢ Ⅎy(x ∈ z ∧ ∀y(AFy ↔
y = z)) | 
| 24 | 23 | nfex 1843 | 
. . . . . . 7
⊢ Ⅎy∃z(x ∈ z ∧ ∀y(AFy ↔
y = z)) | 
| 25 | 20, 24 | nfim 1813 | 
. . . . . 6
⊢ Ⅎy(∃!y AFy → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z))) | 
| 26 |   | bi1 178 | 
. . . . . . . . . . . . . 14
⊢ ((AFy ↔ y =
z) → (AFy → y =
z)) | 
| 27 |   | ax-14 1714 | 
. . . . . . . . . . . . . 14
⊢ (y = z →
(x ∈
y → x ∈ z)) | 
| 28 | 26, 27 | syl6 29 | 
. . . . . . . . . . . . 13
⊢ ((AFy ↔ y =
z) → (AFy → (x
∈ y
→ x ∈ z))) | 
| 29 | 28 | com23 72 | 
. . . . . . . . . . . 12
⊢ ((AFy ↔ y =
z) → (x ∈ y → (AFy → x ∈ z))) | 
| 30 | 29 | imp3a 420 | 
. . . . . . . . . . 11
⊢ ((AFy ↔ y =
z) → ((x ∈ y ∧ AFy) → x
∈ z)) | 
| 31 | 30 | sps 1754 | 
. . . . . . . . . 10
⊢ (∀y(AFy ↔ y =
z) → ((x ∈ y ∧ AFy) → x
∈ z)) | 
| 32 | 31 | anc2ri 541 | 
. . . . . . . . 9
⊢ (∀y(AFy ↔ y =
z) → ((x ∈ y ∧ AFy) → (x
∈ z ∧ ∀y(AFy ↔
y = z)))) | 
| 33 | 32 | com12 27 | 
. . . . . . . 8
⊢ ((x ∈ y ∧ AFy) → (∀y(AFy ↔ y =
z) → (x ∈ z ∧ ∀y(AFy ↔ y =
z)))) | 
| 34 | 33 | eximdv 1622 | 
. . . . . . 7
⊢ ((x ∈ y ∧ AFy) → (∃z∀y(AFy ↔ y =
z) → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)))) | 
| 35 | 17, 34 | syl5bi 208 | 
. . . . . 6
⊢ ((x ∈ y ∧ AFy) → (∃!y AFy → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)))) | 
| 36 | 25, 35 | exlimi 1803 | 
. . . . 5
⊢ (∃y(x ∈ y ∧ AFy) → (∃!y AFy → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)))) | 
| 37 | 36 | imp 418 | 
. . . 4
⊢ ((∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy) → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z))) | 
| 38 | 19, 37 | impbii 180 | 
. . 3
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) ↔ (∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)) | 
| 39 | 1, 38 | bitri 240 | 
. 2
⊢ (x ∈ (F ‘A)
↔ (∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)) | 
| 40 | 39 | eqabi 2465 | 
1
⊢ (F ‘A) =
{x ∣
(∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)} |