Step | Hyp | Ref
| Expression |
1 | | elfv 5327 |
. . 3
⊢ (x ∈ (F ‘A)
↔ ∃z(x ∈ z ∧ ∀y(AFy ↔
y = z))) |
2 | | bi2 189 |
. . . . . . . . . 10
⊢ ((AFy ↔ y =
z) → (y = z →
AFy)) |
3 | 2 | alimi 1559 |
. . . . . . . . 9
⊢ (∀y(AFy ↔ y =
z) → ∀y(y = z →
AFy)) |
4 | | vex 2863 |
. . . . . . . . . 10
⊢ z ∈
V |
5 | | breq2 4644 |
. . . . . . . . . 10
⊢ (y = z →
(AFy ↔
AFz)) |
6 | 4, 5 | ceqsalv 2886 |
. . . . . . . . 9
⊢ (∀y(y = z →
AFy) ↔
AFz) |
7 | 3, 6 | sylib 188 |
. . . . . . . 8
⊢ (∀y(AFy ↔ y =
z) → AFz) |
8 | 7 | anim2i 552 |
. . . . . . 7
⊢ ((x ∈ z ∧ ∀y(AFy ↔ y =
z)) → (x ∈ z ∧ AFz)) |
9 | 8 | eximi 1576 |
. . . . . 6
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃z(x ∈ z ∧ AFz)) |
10 | | elequ2 1715 |
. . . . . . . 8
⊢ (z = y →
(x ∈
z ↔ x ∈ y)) |
11 | | breq2 4644 |
. . . . . . . 8
⊢ (z = y →
(AFz ↔
AFy)) |
12 | 10, 11 | anbi12d 691 |
. . . . . . 7
⊢ (z = y →
((x ∈
z ∧
AFz) ↔
(x ∈
y ∧
AFy))) |
13 | 12 | cbvexv 2003 |
. . . . . 6
⊢ (∃z(x ∈ z ∧ AFz) ↔ ∃y(x ∈ y ∧ AFy)) |
14 | 9, 13 | sylib 188 |
. . . . 5
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃y(x ∈ y ∧ AFy)) |
15 | | 19.40 1609 |
. . . . . . 7
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → (∃z x ∈ z ∧ ∃z∀y(AFy ↔ y =
z))) |
16 | 15 | simprd 449 |
. . . . . 6
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃z∀y(AFy ↔ y =
z)) |
17 | | df-eu 2208 |
. . . . . 6
⊢ (∃!y AFy ↔ ∃z∀y(AFy ↔ y =
z)) |
18 | 16, 17 | sylibr 203 |
. . . . 5
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → ∃!y AFy) |
19 | 14, 18 | jca 518 |
. . . 4
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) → (∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)) |
20 | | nfeu1 2214 |
. . . . . . 7
⊢ Ⅎy∃!y AFy |
21 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎy x ∈ z |
22 | | nfa1 1788 |
. . . . . . . . 9
⊢ Ⅎy∀y(AFy ↔
y = z) |
23 | 21, 22 | nfan 1824 |
. . . . . . . 8
⊢ Ⅎy(x ∈ z ∧ ∀y(AFy ↔
y = z)) |
24 | 23 | nfex 1843 |
. . . . . . 7
⊢ Ⅎy∃z(x ∈ z ∧ ∀y(AFy ↔
y = z)) |
25 | 20, 24 | nfim 1813 |
. . . . . 6
⊢ Ⅎy(∃!y AFy → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z))) |
26 | | bi1 178 |
. . . . . . . . . . . . . 14
⊢ ((AFy ↔ y =
z) → (AFy → y =
z)) |
27 | | ax-14 1714 |
. . . . . . . . . . . . . 14
⊢ (y = z →
(x ∈
y → x ∈ z)) |
28 | 26, 27 | syl6 29 |
. . . . . . . . . . . . 13
⊢ ((AFy ↔ y =
z) → (AFy → (x
∈ y
→ x ∈ z))) |
29 | 28 | com23 72 |
. . . . . . . . . . . 12
⊢ ((AFy ↔ y =
z) → (x ∈ y → (AFy → x ∈ z))) |
30 | 29 | imp3a 420 |
. . . . . . . . . . 11
⊢ ((AFy ↔ y =
z) → ((x ∈ y ∧ AFy) → x
∈ z)) |
31 | 30 | sps 1754 |
. . . . . . . . . 10
⊢ (∀y(AFy ↔ y =
z) → ((x ∈ y ∧ AFy) → x
∈ z)) |
32 | 31 | anc2ri 541 |
. . . . . . . . 9
⊢ (∀y(AFy ↔ y =
z) → ((x ∈ y ∧ AFy) → (x
∈ z ∧ ∀y(AFy ↔
y = z)))) |
33 | 32 | com12 27 |
. . . . . . . 8
⊢ ((x ∈ y ∧ AFy) → (∀y(AFy ↔ y =
z) → (x ∈ z ∧ ∀y(AFy ↔ y =
z)))) |
34 | 33 | eximdv 1622 |
. . . . . . 7
⊢ ((x ∈ y ∧ AFy) → (∃z∀y(AFy ↔ y =
z) → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)))) |
35 | 17, 34 | syl5bi 208 |
. . . . . 6
⊢ ((x ∈ y ∧ AFy) → (∃!y AFy → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)))) |
36 | 25, 35 | exlimi 1803 |
. . . . 5
⊢ (∃y(x ∈ y ∧ AFy) → (∃!y AFy → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)))) |
37 | 36 | imp 418 |
. . . 4
⊢ ((∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy) → ∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z))) |
38 | 19, 37 | impbii 180 |
. . 3
⊢ (∃z(x ∈ z ∧ ∀y(AFy ↔ y =
z)) ↔ (∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)) |
39 | 1, 38 | bitri 240 |
. 2
⊢ (x ∈ (F ‘A)
↔ (∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)) |
40 | 39 | abbi2i 2465 |
1
⊢ (F ‘A) =
{x ∣
(∃y(x ∈ y ∧ AFy) ∧ ∃!y AFy)} |