NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.12sn GIF version

Theorem r19.12sn 3790
Description: Special case of r19.12 2728 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
r19.12sn.1 A V
Assertion
Ref Expression
r19.12sn (x {A}y B φy B x {A}φ)
Distinct variable groups:   x,y,A   x,B
Allowed substitution hints:   φ(x,y)   B(y)

Proof of Theorem r19.12sn
StepHypRef Expression
1 r19.12sn.1 . 2 A V
2 sbcralg 3121 . . 3 (A V → ([̣A / xy B φy BA / xφ))
3 rexsns 3765 . . 3 (A V → (x {A}y B φ ↔ [̣A / xy B φ))
4 rexsns 3765 . . . 4 (A V → (x {A}φ ↔ [̣A / xφ))
54ralbidv 2635 . . 3 (A V → (y B x {A}φy BA / xφ))
62, 3, 53bitr4d 276 . 2 (A V → (x {A}y B φy B x {A}φ))
71, 6ax-mp 5 1 (x {A}y B φy B x {A}φ)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  wral 2615  wrex 2616  Vcvv 2860  wsbc 3047  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-sn 3742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator