NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unpreima GIF version

Theorem unpreima 5408
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unpreima (Fun F → (F “ (AB)) = ((FA) ∪ (FB)))

Proof of Theorem unpreima
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 funfn 5136 . 2 (Fun FF Fn dom F)
2 elun 3220 . . . . . . 7 ((Fx) (AB) ↔ ((Fx) A (Fx) B))
32anbi2i 675 . . . . . 6 ((x dom F (Fx) (AB)) ↔ (x dom F ((Fx) A (Fx) B)))
4 andi 837 . . . . . 6 ((x dom F ((Fx) A (Fx) B)) ↔ ((x dom F (Fx) A) (x dom F (Fx) B)))
53, 4bitri 240 . . . . 5 ((x dom F (Fx) (AB)) ↔ ((x dom F (Fx) A) (x dom F (Fx) B)))
65a1i 10 . . . 4 (F Fn dom F → ((x dom F (Fx) (AB)) ↔ ((x dom F (Fx) A) (x dom F (Fx) B))))
7 elpreima 5407 . . . 4 (F Fn dom F → (x (F “ (AB)) ↔ (x dom F (Fx) (AB))))
8 elun 3220 . . . . 5 (x ((FA) ∪ (FB)) ↔ (x (FA) x (FB)))
9 elpreima 5407 . . . . . 6 (F Fn dom F → (x (FA) ↔ (x dom F (Fx) A)))
10 elpreima 5407 . . . . . 6 (F Fn dom F → (x (FB) ↔ (x dom F (Fx) B)))
119, 10orbi12d 690 . . . . 5 (F Fn dom F → ((x (FA) x (FB)) ↔ ((x dom F (Fx) A) (x dom F (Fx) B))))
128, 11syl5bb 248 . . . 4 (F Fn dom F → (x ((FA) ∪ (FB)) ↔ ((x dom F (Fx) A) (x dom F (Fx) B))))
136, 7, 123bitr4d 276 . . 3 (F Fn dom F → (x (F “ (AB)) ↔ x ((FA) ∪ (FB))))
1413eqrdv 2351 . 2 (F Fn dom F → (F “ (AB)) = ((FA) ∪ (FB)))
151, 14sylbi 187 1 (Fun F → (F “ (AB)) = ((FA) ∪ (FB)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wo 357   wa 358   = wceq 1642   wcel 1710  cun 3207  cima 4722  ccnv 4771  dom cdm 4772  Fun wfun 4775   Fn wfn 4776  cfv 4781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-co 4726  df-ima 4727  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-fv 4795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator