| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3eqtr4a | GIF version | ||
| Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4a.1 | ⊢ A = B |
| 3eqtr4a.2 | ⊢ (φ → C = A) |
| 3eqtr4a.3 | ⊢ (φ → D = B) |
| Ref | Expression |
|---|---|
| 3eqtr4a | ⊢ (φ → C = D) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4a.2 | . . 3 ⊢ (φ → C = A) | |
| 2 | 3eqtr4a.1 | . . 3 ⊢ A = B | |
| 3 | 1, 2 | syl6eq 2401 | . 2 ⊢ (φ → C = B) |
| 4 | 3eqtr4a.3 | . 2 ⊢ (φ → D = B) | |
| 5 | 3, 4 | eqtr4d 2388 | 1 ⊢ (φ → C = D) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
| This theorem is referenced by: uniintsn 3964 iununi 4051 pw1eqadj 4333 tfincl 4493 dmxpid 4925 imasn 5019 rnxpid 5055 1st2nd2 5517 uniqs2 5986 muccom 6135 mucass 6136 mucid1 6144 tcdi 6165 tce2 6237 nchoicelem2 6291 |
| Copyright terms: Public domain | W3C validator |