New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 1st2nd2 | GIF version |
Description: Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by SF, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (A ∈ (B × C) → A = 〈(1st ‘A), (2nd ‘A)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 4803 | . 2 ⊢ (A ∈ (B × C) ↔ ∃x ∈ B ∃y ∈ C A = 〈x, y〉) | |
2 | vex 2863 | . . . . . . . 8 ⊢ x ∈ V | |
3 | vex 2863 | . . . . . . . 8 ⊢ y ∈ V | |
4 | 2, 3 | opfv1st 5515 | . . . . . . 7 ⊢ (1st ‘〈x, y〉) = x |
5 | 2, 3 | opfv2nd 5516 | . . . . . . 7 ⊢ (2nd ‘〈x, y〉) = y |
6 | 4, 5 | opeq12i 4584 | . . . . . 6 ⊢ 〈(1st ‘〈x, y〉), (2nd ‘〈x, y〉)〉 = 〈x, y〉 |
7 | 6 | eqcomi 2357 | . . . . 5 ⊢ 〈x, y〉 = 〈(1st ‘〈x, y〉), (2nd ‘〈x, y〉)〉 |
8 | id 19 | . . . . 5 ⊢ (A = 〈x, y〉 → A = 〈x, y〉) | |
9 | fveq2 5329 | . . . . . 6 ⊢ (A = 〈x, y〉 → (1st ‘A) = (1st ‘〈x, y〉)) | |
10 | fveq2 5329 | . . . . . 6 ⊢ (A = 〈x, y〉 → (2nd ‘A) = (2nd ‘〈x, y〉)) | |
11 | 9, 10 | opeq12d 4587 | . . . . 5 ⊢ (A = 〈x, y〉 → 〈(1st ‘A), (2nd ‘A)〉 = 〈(1st ‘〈x, y〉), (2nd ‘〈x, y〉)〉) |
12 | 7, 8, 11 | 3eqtr4a 2411 | . . . 4 ⊢ (A = 〈x, y〉 → A = 〈(1st ‘A), (2nd ‘A)〉) |
13 | 12 | rexlimivw 2735 | . . 3 ⊢ (∃y ∈ C A = 〈x, y〉 → A = 〈(1st ‘A), (2nd ‘A)〉) |
14 | 13 | rexlimivw 2735 | . 2 ⊢ (∃x ∈ B ∃y ∈ C A = 〈x, y〉 → A = 〈(1st ‘A), (2nd ‘A)〉) |
15 | 1, 14 | sylbi 187 | 1 ⊢ (A ∈ (B × C) → A = 〈(1st ‘A), (2nd ‘A)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 〈cop 4562 1st c1st 4718 × cxp 4771 ‘cfv 4782 2nd c2nd 4784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |