NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniqs2 GIF version

Theorem uniqs2 5985
Description: The union of a quotient set. (Contributed by set.mm contributors, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1 (φR Er V)
qsss.2 (φ → dom R = A)
qsss.3 (φR V)
Assertion
Ref Expression
uniqs2 (φ(A / R) = A)

Proof of Theorem uniqs2
StepHypRef Expression
1 imadmrn 5008 . 2 (R “ dom R) = ran R
2 qsss.3 . . . 4 (φR V)
3 uniqs 5984 . . . 4 (R V(A / R) = (RA))
42, 3syl 15 . . 3 (φ(A / R) = (RA))
5 qsss.2 . . . 4 (φ → dom R = A)
65imaeq2d 4942 . . 3 (φ → (R “ dom R) = (RA))
74, 6eqtr4d 2388 . 2 (φ(A / R) = (R “ dom R))
8 qsss.1 . . . 4 (φR Er V)
9 erdmrn 5965 . . . 4 (R Er V → dom R = ran R)
108, 9syl 15 . . 3 (φ → dom R = ran R)
115, 10eqtr3d 2387 . 2 (φA = ran R)
121, 7, 113eqtr4a 2411 1 (φ(A / R) = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  Vcvv 2859  cuni 3891   class class class wbr 4639  cima 4722  dom cdm 4772  ran crn 4773   Er cer 5898   / cqs 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-iun 3971  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-ima 4727  df-cnv 4785  df-rn 4786  df-dm 4787  df-sym 5908  df-er 5909  df-ec 5947  df-qs 5951
This theorem is referenced by:  qsss  5986
  Copyright terms: Public domain W3C validator