Step | Hyp | Ref
| Expression |
1 | | clos1induct.3 |
. . . 4
⊢ C = Clos1 (S, R) |
2 | | clos1induct.1 |
. . . . 5
⊢ S ∈
V |
3 | | clos1induct.2 |
. . . . 5
⊢ R ∈
V |
4 | 2, 3 | clos1ex 5877 |
. . . 4
⊢ Clos1 (S, R) ∈
V |
5 | 1, 4 | eqeltri 2423 |
. . 3
⊢ C ∈
V |
6 | | inexg 4101 |
. . 3
⊢ ((X ∈ V ∧ C ∈ V) →
(X ∩ C) ∈
V) |
7 | 5, 6 | mpan2 652 |
. 2
⊢ (X ∈ V → (X
∩ C) ∈ V) |
8 | 1 | clos1base 5879 |
. . 3
⊢ S ⊆ C |
9 | | ssin 3478 |
. . . 4
⊢ ((S ⊆ X ∧ S ⊆ C) ↔ S
⊆ (X
∩ C)) |
10 | 9 | biimpi 186 |
. . 3
⊢ ((S ⊆ X ∧ S ⊆ C) → S
⊆ (X
∩ C)) |
11 | 8, 10 | mpan2 652 |
. 2
⊢ (S ⊆ X → S ⊆ (X ∩
C)) |
12 | | elima2 4756 |
. . . . . . 7
⊢ (z ∈ (R “ (X
∩ C)) ↔ ∃x(x ∈ (X ∩ C) ∧ xRz)) |
13 | | elin 3220 |
. . . . . . 7
⊢ (z ∈ (X ∩ C)
↔ (z ∈ X ∧ z ∈ C)) |
14 | 12, 13 | imbi12i 316 |
. . . . . 6
⊢ ((z ∈ (R “ (X
∩ C)) → z ∈ (X ∩ C))
↔ (∃x(x ∈ (X ∩
C) ∧
xRz) →
(z ∈
X ∧
z ∈
C))) |
15 | | df-ral 2620 |
. . . . . . . 8
⊢ (∀x ∈ C ((x ∈ X ∧ xRz) → z
∈ X)
↔ ∀x(x ∈ C →
((x ∈
X ∧
xRz) →
z ∈
X))) |
16 | | impexp 433 |
. . . . . . . . . 10
⊢ (((x ∈ C ∧ (x ∈ X ∧ xRz)) → z
∈ X)
↔ (x ∈ C →
((x ∈
X ∧
xRz) →
z ∈
X))) |
17 | 1 | clos1conn 5880 |
. . . . . . . . . . . . 13
⊢ ((x ∈ C ∧ xRz) → z
∈ C) |
18 | 17 | biantrud 493 |
. . . . . . . . . . . 12
⊢ ((x ∈ C ∧ xRz) → (z
∈ X
↔ (z ∈ X ∧ z ∈ C))) |
19 | 18 | adantrl 696 |
. . . . . . . . . . 11
⊢ ((x ∈ C ∧ (x ∈ X ∧ xRz)) → (z
∈ X
↔ (z ∈ X ∧ z ∈ C))) |
20 | 19 | pm5.74i 236 |
. . . . . . . . . 10
⊢ (((x ∈ C ∧ (x ∈ X ∧ xRz)) → z
∈ X)
↔ ((x ∈ C ∧ (x ∈ X ∧ xRz)) →
(z ∈
X ∧
z ∈
C))) |
21 | 16, 20 | bitr3i 242 |
. . . . . . . . 9
⊢ ((x ∈ C → ((x
∈ X ∧ xRz) →
z ∈
X)) ↔ ((x ∈ C ∧ (x ∈ X ∧ xRz)) → (z
∈ X ∧ z ∈ C))) |
22 | 21 | albii 1566 |
. . . . . . . 8
⊢ (∀x(x ∈ C → ((x
∈ X ∧ xRz) →
z ∈
X)) ↔ ∀x((x ∈ C ∧ (x ∈ X ∧ xRz)) → (z
∈ X ∧ z ∈ C))) |
23 | 15, 22 | bitri 240 |
. . . . . . 7
⊢ (∀x ∈ C ((x ∈ X ∧ xRz) → z
∈ X)
↔ ∀x((x ∈ C ∧ (x ∈ X ∧ xRz)) →
(z ∈
X ∧
z ∈
C))) |
24 | | elin 3220 |
. . . . . . . . . . . 12
⊢ (x ∈ (X ∩ C)
↔ (x ∈ X ∧ x ∈ C)) |
25 | | ancom 437 |
. . . . . . . . . . . 12
⊢ ((x ∈ X ∧ x ∈ C) ↔ (x
∈ C ∧ x ∈ X)) |
26 | 24, 25 | bitri 240 |
. . . . . . . . . . 11
⊢ (x ∈ (X ∩ C)
↔ (x ∈ C ∧ x ∈ X)) |
27 | 26 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((x ∈ (X ∩ C) ∧ xRz) ↔
((x ∈
C ∧
x ∈
X) ∧
xRz)) |
28 | | anass 630 |
. . . . . . . . . 10
⊢ (((x ∈ C ∧ x ∈ X) ∧ xRz) ↔ (x
∈ C ∧ (x ∈ X ∧ xRz))) |
29 | 27, 28 | bitri 240 |
. . . . . . . . 9
⊢ ((x ∈ (X ∩ C) ∧ xRz) ↔
(x ∈
C ∧
(x ∈
X ∧
xRz))) |
30 | 29 | imbi1i 315 |
. . . . . . . 8
⊢ (((x ∈ (X ∩ C) ∧ xRz) →
(z ∈
X ∧
z ∈
C)) ↔ ((x ∈ C ∧ (x ∈ X ∧ xRz)) → (z
∈ X ∧ z ∈ C))) |
31 | 30 | albii 1566 |
. . . . . . 7
⊢ (∀x((x ∈ (X ∩ C) ∧ xRz) →
(z ∈
X ∧
z ∈
C)) ↔ ∀x((x ∈ C ∧ (x ∈ X ∧ xRz)) → (z
∈ X ∧ z ∈ C))) |
32 | | 19.23v 1891 |
. . . . . . 7
⊢ (∀x((x ∈ (X ∩ C) ∧ xRz) →
(z ∈
X ∧
z ∈
C)) ↔ (∃x(x ∈ (X ∩ C) ∧ xRz) →
(z ∈
X ∧
z ∈
C))) |
33 | 23, 31, 32 | 3bitr2i 264 |
. . . . . 6
⊢ (∀x ∈ C ((x ∈ X ∧ xRz) → z
∈ X)
↔ (∃x(x ∈ (X ∩
C) ∧
xRz) →
(z ∈
X ∧
z ∈
C))) |
34 | 14, 33 | bitr4i 243 |
. . . . 5
⊢ ((z ∈ (R “ (X
∩ C)) → z ∈ (X ∩ C))
↔ ∀x ∈ C ((x ∈ X ∧ xRz) →
z ∈
X)) |
35 | 34 | albii 1566 |
. . . 4
⊢ (∀z(z ∈ (R “ (X
∩ C)) → z ∈ (X ∩ C))
↔ ∀z∀x ∈ C ((x ∈ X ∧ xRz) →
z ∈
X)) |
36 | | dfss2 3263 |
. . . 4
⊢ ((R “ (X
∩ C)) ⊆ (X ∩
C) ↔ ∀z(z ∈ (R “ (X
∩ C)) → z ∈ (X ∩ C))) |
37 | | ralcom4 2878 |
. . . 4
⊢ (∀x ∈ C ∀z((x ∈ X ∧ xRz) → z
∈ X)
↔ ∀z∀x ∈ C ((x ∈ X ∧ xRz) →
z ∈
X)) |
38 | 35, 36, 37 | 3bitr4i 268 |
. . 3
⊢ ((R “ (X
∩ C)) ⊆ (X ∩
C) ↔ ∀x ∈ C ∀z((x ∈ X ∧ xRz) → z
∈ X)) |
39 | 38 | biimpri 197 |
. 2
⊢ (∀x ∈ C ∀z((x ∈ X ∧ xRz) → z
∈ X)
→ (R “ (X ∩ C))
⊆ (X
∩ C)) |
40 | | df-clos1 5874 |
. . . . 5
⊢ Clos1 (S, R) = ∩{a ∣ (S ⊆ a ∧ (R “ a)
⊆ a)} |
41 | 1, 40 | eqtri 2373 |
. . . 4
⊢ C = ∩{a ∣ (S ⊆ a ∧ (R “ a)
⊆ a)} |
42 | | sseq2 3294 |
. . . . . . . . 9
⊢ (a = (X ∩
C) → (S ⊆ a ↔ S ⊆ (X ∩
C))) |
43 | | imaeq2 4939 |
. . . . . . . . . 10
⊢ (a = (X ∩
C) → (R “ a) =
(R “ (X ∩ C))) |
44 | | id 19 |
. . . . . . . . . 10
⊢ (a = (X ∩
C) → a = (X ∩
C)) |
45 | 43, 44 | sseq12d 3301 |
. . . . . . . . 9
⊢ (a = (X ∩
C) → ((R “ a)
⊆ a
↔ (R “ (X ∩ C))
⊆ (X
∩ C))) |
46 | 42, 45 | anbi12d 691 |
. . . . . . . 8
⊢ (a = (X ∩
C) → ((S ⊆ a ∧ (R “ a)
⊆ a)
↔ (S ⊆ (X ∩
C) ∧
(R “ (X ∩ C))
⊆ (X
∩ C)))) |
47 | 46 | elabg 2987 |
. . . . . . 7
⊢ ((X ∩ C) ∈ V → ((X
∩ C) ∈ {a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)} ↔ (S ⊆ (X ∩ C) ∧ (R “
(X ∩ C)) ⊆ (X ∩ C)))) |
48 | 47 | biimprd 214 |
. . . . . 6
⊢ ((X ∩ C) ∈ V → ((S
⊆ (X
∩ C) ∧
(R “ (X ∩ C))
⊆ (X
∩ C)) → (X ∩ C) ∈ {a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)})) |
49 | 48 | 3impib 1149 |
. . . . 5
⊢ (((X ∩ C) ∈ V ∧ S ⊆ (X ∩ C) ∧ (R “
(X ∩ C)) ⊆ (X ∩ C))
→ (X ∩ C) ∈ {a ∣ (S ⊆ a ∧ (R “ a)
⊆ a)}) |
50 | | intss1 3942 |
. . . . 5
⊢ ((X ∩ C) ∈ {a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)} → ∩{a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)} ⊆
(X ∩ C)) |
51 | 49, 50 | syl 15 |
. . . 4
⊢ (((X ∩ C) ∈ V ∧ S ⊆ (X ∩ C) ∧ (R “
(X ∩ C)) ⊆ (X ∩ C))
→ ∩{a ∣ (S ⊆ a ∧ (R “
a) ⊆
a)} ⊆
(X ∩ C)) |
52 | 41, 51 | syl5eqss 3316 |
. . 3
⊢ (((X ∩ C) ∈ V ∧ S ⊆ (X ∩ C) ∧ (R “
(X ∩ C)) ⊆ (X ∩ C))
→ C ⊆ (X ∩
C)) |
53 | | inss1 3476 |
. . 3
⊢ (X ∩ C) ⊆ X |
54 | 52, 53 | syl6ss 3285 |
. 2
⊢ (((X ∩ C) ∈ V ∧ S ⊆ (X ∩ C) ∧ (R “
(X ∩ C)) ⊆ (X ∩ C))
→ C ⊆ X) |
55 | 7, 11, 39, 54 | syl3an 1224 |
1
⊢ ((X ∈ V ∧ S ⊆ X ∧ ∀x ∈ C ∀z((x ∈ X ∧ xRz) → z
∈ X))
→ C ⊆ X) |