New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbthlem2 | GIF version |
Description: Lemma for sbth 6207. Eliminate hypotheses from sbthlem1 6204. Theorem XI.1.14 of [Rosser] p. 350. (Contributed by SF, 10-Mar-2015.) |
Ref | Expression |
---|---|
sbthlem2.1 | ⊢ R ∈ V |
Ref | Expression |
---|---|
sbthlem2 | ⊢ (((Fun R ∧ Fun ◡R) ∧ (B ∈ V ∧ B ⊆ dom R ∧ ran R ⊆ B)) → ran R ≈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3293 | . . . . . 6 ⊢ (b = B → (b ⊆ dom R ↔ B ⊆ dom R)) | |
2 | sseq2 3294 | . . . . . 6 ⊢ (b = B → (ran R ⊆ b ↔ ran R ⊆ B)) | |
3 | 1, 2 | anbi12d 691 | . . . . 5 ⊢ (b = B → ((b ⊆ dom R ∧ ran R ⊆ b) ↔ (B ⊆ dom R ∧ ran R ⊆ B))) |
4 | breq2 4644 | . . . . . 6 ⊢ (b = B → (ran R ≈ b ↔ ran R ≈ B)) | |
5 | 4 | imbi2d 307 | . . . . 5 ⊢ (b = B → (((Fun R ∧ Fun ◡R) → ran R ≈ b) ↔ ((Fun R ∧ Fun ◡R) → ran R ≈ B))) |
6 | 3, 5 | imbi12d 311 | . . . 4 ⊢ (b = B → (((b ⊆ dom R ∧ ran R ⊆ b) → ((Fun R ∧ Fun ◡R) → ran R ≈ b)) ↔ ((B ⊆ dom R ∧ ran R ⊆ B) → ((Fun R ∧ Fun ◡R) → ran R ≈ B)))) |
7 | sbthlem2.1 | . . . . . 6 ⊢ R ∈ V | |
8 | vex 2863 | . . . . . 6 ⊢ b ∈ V | |
9 | eqid 2353 | . . . . . 6 ⊢ Clos1 ((b ∖ ran R), R) = Clos1 ((b ∖ ran R), R) | |
10 | eqid 2353 | . . . . . 6 ⊢ (b ∩ Clos1 ((b ∖ ran R), R)) = (b ∩ Clos1 ((b ∖ ran R), R)) | |
11 | eqid 2353 | . . . . . 6 ⊢ (b ∖ Clos1 ((b ∖ ran R), R)) = (b ∖ Clos1 ((b ∖ ran R), R)) | |
12 | eqid 2353 | . . . . . 6 ⊢ (ran R ∩ Clos1 ((b ∖ ran R), R)) = (ran R ∩ Clos1 ((b ∖ ran R), R)) | |
13 | eqid 2353 | . . . . . 6 ⊢ (ran R ∖ Clos1 ((b ∖ ran R), R)) = (ran R ∖ Clos1 ((b ∖ ran R), R)) | |
14 | 7, 8, 9, 10, 11, 12, 13 | sbthlem1 6204 | . . . . 5 ⊢ (((Fun R ∧ Fun ◡R) ∧ (b ⊆ dom R ∧ ran R ⊆ b)) → ran R ≈ b) |
15 | 14 | expcom 424 | . . . 4 ⊢ ((b ⊆ dom R ∧ ran R ⊆ b) → ((Fun R ∧ Fun ◡R) → ran R ≈ b)) |
16 | 6, 15 | vtoclg 2915 | . . 3 ⊢ (B ∈ V → ((B ⊆ dom R ∧ ran R ⊆ B) → ((Fun R ∧ Fun ◡R) → ran R ≈ B))) |
17 | 16 | 3impib 1149 | . 2 ⊢ ((B ∈ V ∧ B ⊆ dom R ∧ ran R ⊆ B) → ((Fun R ∧ Fun ◡R) → ran R ≈ B)) |
18 | 17 | impcom 419 | 1 ⊢ (((Fun R ∧ Fun ◡R) ∧ (B ∈ V ∧ B ⊆ dom R ∧ ran R ⊆ B)) → ran R ≈ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∖ cdif 3207 ∩ cin 3209 ⊆ wss 3258 class class class wbr 4640 ◡ccnv 4772 dom cdm 4773 ran crn 4774 Fun wfun 4776 Clos1 cclos1 5873 ≈ cen 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-clos1 5874 df-en 6030 |
This theorem is referenced by: sbthlem3 6206 |
Copyright terms: Public domain | W3C validator |