NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ltlefin GIF version

Theorem ltlefin 4469
Description: Less than implies less than or equal. (Contributed by SF, 2-Feb-2015.)
Assertion
Ref Expression
ltlefin ((A V B W) → (⟪A, B <fin → ⟪A, Bfin ))

Proof of Theorem ltlefin
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcass 4416 . . . . . . 7 ((A +c x) +c 1c) = (A +c (x +c 1c))
21eqeq2i 2363 . . . . . 6 (B = ((A +c x) +c 1c) ↔ B = (A +c (x +c 1c)))
3 peano2 4404 . . . . . . 7 (x Nn → (x +c 1c) Nn )
4 addceq2 4385 . . . . . . . . 9 (y = (x +c 1c) → (A +c y) = (A +c (x +c 1c)))
54eqeq2d 2364 . . . . . . . 8 (y = (x +c 1c) → (B = (A +c y) ↔ B = (A +c (x +c 1c))))
65rspcev 2956 . . . . . . 7 (((x +c 1c) Nn B = (A +c (x +c 1c))) → y Nn B = (A +c y))
73, 6sylan 457 . . . . . 6 ((x Nn B = (A +c (x +c 1c))) → y Nn B = (A +c y))
82, 7sylan2b 461 . . . . 5 ((x Nn B = ((A +c x) +c 1c)) → y Nn B = (A +c y))
98rexlimiva 2734 . . . 4 (x Nn B = ((A +c x) +c 1c) → y Nn B = (A +c y))
109adantl 452 . . 3 ((A x Nn B = ((A +c x) +c 1c)) → y Nn B = (A +c y))
1110a1i 10 . 2 ((A V B W) → ((A x Nn B = ((A +c x) +c 1c)) → y Nn B = (A +c y)))
12 opkltfing 4450 . 2 ((A V B W) → (⟪A, B <fin ↔ (A x Nn B = ((A +c x) +c 1c))))
13 opklefing 4449 . 2 ((A V B W) → (⟪A, Bfiny Nn B = (A +c y)))
1411, 12, 133imtr4d 259 1 ((A V B W) → (⟪A, B <fin → ⟪A, Bfin ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  wne 2517  wrex 2616  c0 3551  copk 4058  1cc1c 4135   Nn cnnc 4374   +c cplc 4376  fin clefin 4433   <fin cltfin 4434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194  df-addc 4379  df-nnc 4380  df-lefin 4441  df-ltfin 4442
This theorem is referenced by:  lenltfin  4470
  Copyright terms: Public domain W3C validator