| Step | Hyp | Ref
| Expression |
| 1 | | opklefing 4449 |
. . . 4
⊢ ((A ∈ Nn ∧ B ∈ Nn ) → (⟪A, B⟫
∈ ≤fin ↔ ∃x ∈ Nn B = (A
+c x))) |
| 2 | 1 | 3adant3 975 |
. . 3
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (⟪A, B⟫
∈ ≤fin ↔ ∃x ∈ Nn B = (A
+c x))) |
| 3 | | addcnnul 4454 |
. . . . . . . . . 10
⊢ ((A +c x) ≠ ∅ →
(A ≠ ∅ ∧ x ≠ ∅)) |
| 4 | 3 | simpld 445 |
. . . . . . . . 9
⊢ ((A +c x) ≠ ∅ →
A ≠ ∅) |
| 5 | 4 | a1i 10 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → ((A
+c x) ≠ ∅ → A
≠ ∅)) |
| 6 | | nncaddccl 4420 |
. . . . . . . . . . . . . 14
⊢ ((x ∈ Nn ∧ y ∈ Nn ) → (x
+c y) ∈ Nn
) |
| 7 | 6 | 3adant1 973 |
. . . . . . . . . . . . 13
⊢ ((A ∈ Nn ∧ x ∈ Nn ∧ y ∈ Nn ) → (x
+c y) ∈ Nn
) |
| 8 | | addcass 4416 |
. . . . . . . . . . . . . . 15
⊢ ((A +c x) +c y) = (A
+c (x
+c y)) |
| 9 | | addceq1 4384 |
. . . . . . . . . . . . . . 15
⊢ (((A +c x) +c y) = (A
+c (x
+c y)) → (((A +c x) +c y) +c 1c) =
((A +c (x +c y)) +c
1c)) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (((A +c x) +c y) +c 1c) =
((A +c (x +c y)) +c
1c) |
| 11 | 10 | a1i 10 |
. . . . . . . . . . . . 13
⊢ ((A ∈ Nn ∧ x ∈ Nn ∧ y ∈ Nn ) → (((A
+c x)
+c y)
+c 1c) = ((A +c (x +c y)) +c
1c)) |
| 12 | | addceq2 4385 |
. . . . . . . . . . . . . . . 16
⊢ (z = (x
+c y) → (A +c z) = (A
+c (x
+c y))) |
| 13 | | addceq1 4384 |
. . . . . . . . . . . . . . . 16
⊢ ((A +c z) = (A
+c (x
+c y)) → ((A +c z) +c 1c) =
((A +c (x +c y)) +c
1c)) |
| 14 | 12, 13 | syl 15 |
. . . . . . . . . . . . . . 15
⊢ (z = (x
+c y) → ((A +c z) +c 1c) =
((A +c (x +c y)) +c
1c)) |
| 15 | 14 | eqeq2d 2364 |
. . . . . . . . . . . . . 14
⊢ (z = (x
+c y) → ((((A +c x) +c y) +c 1c) =
((A +c z) +c 1c) ↔
(((A +c x) +c y) +c 1c) =
((A +c (x +c y)) +c
1c))) |
| 16 | 15 | rspcev 2956 |
. . . . . . . . . . . . 13
⊢ (((x +c y) ∈ Nn ∧ (((A +c x) +c y) +c 1c) =
((A +c (x +c y)) +c 1c))
→ ∃z ∈ Nn (((A
+c x)
+c y)
+c 1c) = ((A +c z) +c
1c)) |
| 17 | 7, 11, 16 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ ((A ∈ Nn ∧ x ∈ Nn ∧ y ∈ Nn ) → ∃z ∈ Nn (((A
+c x)
+c y)
+c 1c) = ((A +c z) +c
1c)) |
| 18 | | eqeq1 2359 |
. . . . . . . . . . . . 13
⊢ (C = (((A
+c x)
+c y)
+c 1c) → (C = ((A
+c z)
+c 1c) ↔ (((A +c x) +c y) +c 1c) =
((A +c z) +c
1c))) |
| 19 | 18 | rexbidv 2636 |
. . . . . . . . . . . 12
⊢ (C = (((A
+c x)
+c y)
+c 1c) → (∃z ∈ Nn C = ((A
+c z)
+c 1c) ↔ ∃z ∈ Nn (((A +c x) +c y) +c 1c) =
((A +c z) +c
1c))) |
| 20 | 17, 19 | syl5ibrcom 213 |
. . . . . . . . . . 11
⊢ ((A ∈ Nn ∧ x ∈ Nn ∧ y ∈ Nn ) → (C =
(((A +c x) +c y) +c 1c) →
∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 21 | 20 | 3expa 1151 |
. . . . . . . . . 10
⊢ (((A ∈ Nn ∧ x ∈ Nn ) ∧ y ∈ Nn ) → (C =
(((A +c x) +c y) +c 1c) →
∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 22 | 21 | adantllr 699 |
. . . . . . . . 9
⊢ ((((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) ∧ y ∈ Nn ) → (C =
(((A +c x) +c y) +c 1c) →
∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 23 | 22 | rexlimdva 2739 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (∃y ∈ Nn C = (((A
+c x)
+c y)
+c 1c) → ∃z ∈ Nn C = ((A
+c z)
+c 1c))) |
| 24 | 5, 23 | anim12d 546 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (((A
+c x) ≠ ∅ ∧ ∃y ∈ Nn C = (((A
+c x)
+c y)
+c 1c)) → (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 25 | | addcexg 4394 |
. . . . . . . . 9
⊢ ((A ∈ Nn ∧ x ∈ Nn ) → (A
+c x) ∈ V) |
| 26 | 25 | adantlr 695 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (A
+c x) ∈ V) |
| 27 | | simplr 731 |
. . . . . . . 8
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → C ∈ Nn
) |
| 28 | | opkltfing 4450 |
. . . . . . . 8
⊢ (((A +c x) ∈ V ∧ C ∈ Nn ) →
(⟪(A +c x), C⟫
∈ <fin ↔ ((A +c x) ≠ ∅ ∧ ∃y ∈ Nn C = (((A +c x) +c y) +c
1c)))) |
| 29 | 26, 27, 28 | syl2anc 642 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (⟪(A +c x), C⟫
∈ <fin ↔ ((A +c x) ≠ ∅ ∧ ∃y ∈ Nn C = (((A +c x) +c y) +c
1c)))) |
| 30 | | opkltfing 4450 |
. . . . . . . 8
⊢ ((A ∈ Nn ∧ C ∈ Nn ) → (⟪A, C⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 31 | 30 | adantr 451 |
. . . . . . 7
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (⟪A, C⟫
∈ <fin ↔ (A ≠ ∅ ∧ ∃z ∈ Nn C = ((A +c z) +c
1c)))) |
| 32 | 24, 29, 31 | 3imtr4d 259 |
. . . . . 6
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (⟪(A +c x), C⟫
∈ <fin → ⟪A, C⟫
∈ <fin )) |
| 33 | | opkeq1 4060 |
. . . . . . . 8
⊢ (B = (A
+c x) →
⟪B, C⟫ = ⟪(A +c x), C⟫) |
| 34 | 33 | eleq1d 2419 |
. . . . . . 7
⊢ (B = (A
+c x) →
(⟪B, C⟫ ∈
<fin ↔ ⟪(A
+c x), C⟫ ∈
<fin )) |
| 35 | 34 | imbi1d 308 |
. . . . . 6
⊢ (B = (A
+c x) →
((⟪B, C⟫ ∈
<fin → ⟪A,
C⟫ ∈ <fin ) ↔ (⟪(A +c x), C⟫
∈ <fin → ⟪A, C⟫
∈ <fin ))) |
| 36 | 32, 35 | syl5ibrcom 213 |
. . . . 5
⊢ (((A ∈ Nn ∧ C ∈ Nn ) ∧ x ∈ Nn ) → (B =
(A +c x) → (⟪B, C⟫
∈ <fin → ⟪A, C⟫
∈ <fin ))) |
| 37 | 36 | rexlimdva 2739 |
. . . 4
⊢ ((A ∈ Nn ∧ C ∈ Nn ) → (∃x ∈ Nn B = (A
+c x) →
(⟪B, C⟫ ∈
<fin → ⟪A,
C⟫ ∈ <fin ))) |
| 38 | 37 | 3adant2 974 |
. . 3
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (∃x ∈ Nn B = (A
+c x) →
(⟪B, C⟫ ∈
<fin → ⟪A,
C⟫ ∈ <fin ))) |
| 39 | 2, 38 | sylbid 206 |
. 2
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → (⟪A, B⟫
∈ ≤fin → (⟪B, C⟫
∈ <fin → ⟪A, C⟫
∈ <fin ))) |
| 40 | 39 | imp3a 420 |
1
⊢ ((A ∈ Nn ∧ B ∈ Nn ∧ C ∈ Nn ) → ((⟪A, B⟫
∈ ≤fin ∧ ⟪B,
C⟫ ∈ <fin ) → ⟪A, C⟫
∈ <fin )) |