NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pw1ss GIF version

Theorem pw1ss 4170
Description: Unit power set preserves subset. (Contributed by SF, 3-Feb-2015.)
Assertion
Ref Expression
pw1ss (A B1A 1B)

Proof of Theorem pw1ss
StepHypRef Expression
1 sspwb 4119 . . 3 (A BA B)
2 ssrin 3481 . . 3 (A B → (A ∩ 1c) (B ∩ 1c))
31, 2sylbi 187 . 2 (A B → (A ∩ 1c) (B ∩ 1c))
4 df-pw1 4138 . 2 1A = (A ∩ 1c)
5 df-pw1 4138 . 2 1B = (B ∩ 1c)
63, 4, 53sstr4g 3313 1 (A B1A 1B)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3209   wss 3258  cpw 3723  1cc1c 4135  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pw1 4138
This theorem is referenced by:  sspw1  4336
  Copyright terms: Public domain W3C validator