NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anim1d GIF version

Theorem anim1d 547
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
anim1d.1 (φ → (ψχ))
Assertion
Ref Expression
anim1d (φ → ((ψ θ) → (χ θ)))

Proof of Theorem anim1d
StepHypRef Expression
1 anim1d.1 . 2 (φ → (ψχ))
2 idd 21 . 2 (φ → (θθ))
31, 2anim12d 546 1 (φ → ((ψ θ) → (χ θ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  pm3.45  807  ax12olem2  1928  exdistrf  1971  mopick2  2271  ssrexv  3332  ssdif  3402  ssrin  3481  reupick  3540  copsexg  4608  coss2  4874  fununi  5161  fnfreclem3  6320
  Copyright terms: Public domain W3C validator