![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > anim1d | GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
anim1d | ⊢ (φ → ((ψ ∧ θ) → (χ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | idd 21 | . 2 ⊢ (φ → (θ → θ)) | |
3 | 1, 2 | anim12d 546 | 1 ⊢ (φ → ((ψ ∧ θ) → (χ ∧ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm3.45 807 ax12olem2 1928 exdistrf 1971 mopick2 2271 ssrexv 3331 ssdif 3401 ssrin 3480 reupick 3539 copsexg 4607 coss2 4873 fununi 5160 fnfreclem3 6319 |
Copyright terms: Public domain | W3C validator |