NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anim2d GIF version

Theorem anim2d 548
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
anim1d.1 (φ → (ψχ))
Assertion
Ref Expression
anim2d (φ → ((θ ψ) → (θ χ)))

Proof of Theorem anim2d
StepHypRef Expression
1 idd 21 . 2 (φ → (θθ))
2 anim1d.1 . 2 (φ → (ψχ))
31, 2anim12d 546 1 (φ → ((θ ψ) → (θ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  moeq3  3014  ssel  3268  sscon  3401  uniss  3913  copsexg  4608  ssopab2  4713  coss1  4873  fununi  5161  imadif  5172  fss  5231  weds  5939
  Copyright terms: Public domain W3C validator