Proof of Theorem ax12olem2
Step | Hyp | Ref
| Expression |
1 | | ax12olem2.1 |
. . . . . 6
⊢ (¬ x = y →
(y = w
→ ∀x y = w)) |
2 | 1 | anim1d 547 |
. . . . 5
⊢ (¬ x = y →
((y = w
∧ ¬ z
= w) → (∀x y = w ∧ ¬ z =
w))) |
3 | | ax-17 1616 |
. . . . . . 7
⊢ (¬ z = w →
∀x
¬ z = w) |
4 | 3 | anim2i 552 |
. . . . . 6
⊢ ((∀x y = w ∧ ¬ z =
w) → (∀x y = w ∧ ∀x ¬ z =
w)) |
5 | | 19.26 1593 |
. . . . . 6
⊢ (∀x(y = w ∧ ¬ z =
w) ↔ (∀x y = w ∧ ∀x ¬ z =
w)) |
6 | 4, 5 | sylibr 203 |
. . . . 5
⊢ ((∀x y = w ∧ ¬ z =
w) → ∀x(y = w ∧ ¬ z =
w)) |
7 | 2, 6 | syl6 29 |
. . . 4
⊢ (¬ x = y →
((y = w
∧ ¬ z
= w) → ∀x(y = w ∧ ¬ z =
w))) |
8 | 7 | eximdv 1622 |
. . 3
⊢ (¬ x = y →
(∃w(y = w ∧ ¬ z = w) →
∃w∀x(y = w ∧ ¬ z =
w))) |
9 | | 19.12 1847 |
. . 3
⊢ (∃w∀x(y = w ∧ ¬ z =
w) → ∀x∃w(y = w ∧ ¬ z =
w)) |
10 | 8, 9 | syl6 29 |
. 2
⊢ (¬ x = y →
(∃w(y = w ∧ ¬ z = w) →
∀x∃w(y = w ∧ ¬ z =
w))) |
11 | | ax12olem1 1927 |
. 2
⊢ (∃w(y = w ∧ ¬ z =
w) ↔ ¬ y = z) |
12 | 11 | albii 1566 |
. 2
⊢ (∀x∃w(y = w ∧ ¬ z =
w) ↔ ∀x ¬
y = z) |
13 | 10, 11, 12 | 3imtr3g 260 |
1
⊢ (¬ x = y →
(¬ y = z → ∀x ¬
y = z)) |