New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equcom | GIF version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom | ⊢ (x = y ↔ y = x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1679 | . 2 ⊢ (x = y → y = x) | |
2 | equcomi 1679 | . 2 ⊢ (y = x → x = y) | |
3 | 1, 2 | impbii 180 | 1 ⊢ (x = y ↔ y = x) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: equequ2 1686 ax12olem6 1932 eu1 2225 2eu6 2289 reu8 3033 iunid 4022 unipw1 4326 addcid1 4406 evenodddisjlem1 4516 dfphi2 4570 proj1op 4601 proj2op 4602 copsexg 4608 phidisjnn 4616 dfid3 4769 opeliunxp 4821 dmi 4920 opabresid 5004 intirr 5030 cnvi 5033 coi1 5095 trtxp 5782 oqelins4 5795 fvfullfunlem1 5862 extex 5916 enpw1lem1 6062 el2c 6192 addccan2nclem1 6264 fnfreclem1 6318 scancan 6332 |
Copyright terms: Public domain | W3C validator |