NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  caovord3 GIF version

Theorem caovord3 5632
Description: Ordering law. (Contributed by set.mm contributors, 29-Feb-1996.)
Hypotheses
Ref Expression
caovord.1 A V
caovord.2 B V
caovord.3 (z S → (xRy ↔ (zFx)R(zFy)))
caovord2.3 C V
caovord2.com (xFy) = (yFx)
caovord3.4 D V
Assertion
Ref Expression
caovord3 (((B S C S) (AFB) = (CFD)) → (ARCDRB))
Distinct variable groups:   x,y,z,F   x,S,y,z   x,A,y,z   x,B,y,z   x,C,y,z   x,D,y,z   x,R,y,z

Proof of Theorem caovord3
StepHypRef Expression
1 caovord.1 . . . . 5 A V
2 caovord2.3 . . . . 5 C V
3 caovord.3 . . . . 5 (z S → (xRy ↔ (zFx)R(zFy)))
4 caovord.2 . . . . 5 B V
5 caovord2.com . . . . 5 (xFy) = (yFx)
61, 2, 3, 4, 5caovord2 5631 . . . 4 (B S → (ARC ↔ (AFB)R(CFB)))
76adantr 451 . . 3 ((B S C S) → (ARC ↔ (AFB)R(CFB)))
8 breq1 4643 . . 3 ((AFB) = (CFD) → ((AFB)R(CFB) ↔ (CFD)R(CFB)))
97, 8sylan9bb 680 . 2 (((B S C S) (AFB) = (CFD)) → (ARC ↔ (CFD)R(CFB)))
10 caovord3.4 . . . 4 D V
1110, 4, 3caovord 5630 . . 3 (C S → (DRB ↔ (CFD)R(CFB)))
1211ad2antlr 707 . 2 (((B S C S) (AFB) = (CFD)) → (DRB ↔ (CFD)R(CFB)))
139, 12bitr4d 247 1 (((B S C S) (AFB) = (CFD)) → (ARCDRB))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  Vcvv 2860   class class class wbr 4640  (class class class)co 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-fv 4796  df-ov 5527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator