New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovord3 | GIF version |
Description: Ordering law. (Contributed by set.mm contributors, 29-Feb-1996.) |
Ref | Expression |
---|---|
caovord.1 | ⊢ A ∈ V |
caovord.2 | ⊢ B ∈ V |
caovord.3 | ⊢ (z ∈ S → (xRy ↔ (zFx)R(zFy))) |
caovord2.3 | ⊢ C ∈ V |
caovord2.com | ⊢ (xFy) = (yFx) |
caovord3.4 | ⊢ D ∈ V |
Ref | Expression |
---|---|
caovord3 | ⊢ (((B ∈ S ∧ C ∈ S) ∧ (AFB) = (CFD)) → (ARC ↔ DRB)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovord.1 | . . . . 5 ⊢ A ∈ V | |
2 | caovord2.3 | . . . . 5 ⊢ C ∈ V | |
3 | caovord.3 | . . . . 5 ⊢ (z ∈ S → (xRy ↔ (zFx)R(zFy))) | |
4 | caovord.2 | . . . . 5 ⊢ B ∈ V | |
5 | caovord2.com | . . . . 5 ⊢ (xFy) = (yFx) | |
6 | 1, 2, 3, 4, 5 | caovord2 5631 | . . . 4 ⊢ (B ∈ S → (ARC ↔ (AFB)R(CFB))) |
7 | 6 | adantr 451 | . . 3 ⊢ ((B ∈ S ∧ C ∈ S) → (ARC ↔ (AFB)R(CFB))) |
8 | breq1 4643 | . . 3 ⊢ ((AFB) = (CFD) → ((AFB)R(CFB) ↔ (CFD)R(CFB))) | |
9 | 7, 8 | sylan9bb 680 | . 2 ⊢ (((B ∈ S ∧ C ∈ S) ∧ (AFB) = (CFD)) → (ARC ↔ (CFD)R(CFB))) |
10 | caovord3.4 | . . . 4 ⊢ D ∈ V | |
11 | 10, 4, 3 | caovord 5630 | . . 3 ⊢ (C ∈ S → (DRB ↔ (CFD)R(CFB))) |
12 | 11 | ad2antlr 707 | . 2 ⊢ (((B ∈ S ∧ C ∈ S) ∧ (AFB) = (CFD)) → (DRB ↔ (CFD)R(CFB))) |
13 | 9, 12 | bitr4d 247 | 1 ⊢ (((B ∈ S ∧ C ∈ S) ∧ (AFB) = (CFD)) → (ARC ↔ DRB)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 class class class wbr 4640 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |