New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dffn5 | GIF version |
Description: Representation of a function in terms of its values. (Contributed by set.mm contributors, 29-Jan-2004.) |
Ref | Expression |
---|---|
dffn5 | ⊢ (F Fn A ↔ F = {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnop 5187 | . . . . . . 7 ⊢ ((F Fn A ∧ 〈z, w〉 ∈ F) → z ∈ A) | |
2 | 1 | ex 423 | . . . . . 6 ⊢ (F Fn A → (〈z, w〉 ∈ F → z ∈ A)) |
3 | 2 | pm4.71rd 616 | . . . . 5 ⊢ (F Fn A → (〈z, w〉 ∈ F ↔ (z ∈ A ∧ 〈z, w〉 ∈ F))) |
4 | eqcom 2355 | . . . . . . 7 ⊢ (w = (F ‘z) ↔ (F ‘z) = w) | |
5 | fnopfvb 5360 | . . . . . . 7 ⊢ ((F Fn A ∧ z ∈ A) → ((F ‘z) = w ↔ 〈z, w〉 ∈ F)) | |
6 | 4, 5 | syl5bb 248 | . . . . . 6 ⊢ ((F Fn A ∧ z ∈ A) → (w = (F ‘z) ↔ 〈z, w〉 ∈ F)) |
7 | 6 | pm5.32da 622 | . . . . 5 ⊢ (F Fn A → ((z ∈ A ∧ w = (F ‘z)) ↔ (z ∈ A ∧ 〈z, w〉 ∈ F))) |
8 | 3, 7 | bitr4d 247 | . . . 4 ⊢ (F Fn A → (〈z, w〉 ∈ F ↔ (z ∈ A ∧ w = (F ‘z)))) |
9 | vex 2863 | . . . . 5 ⊢ z ∈ V | |
10 | vex 2863 | . . . . 5 ⊢ w ∈ V | |
11 | eleq1 2413 | . . . . . 6 ⊢ (x = z → (x ∈ A ↔ z ∈ A)) | |
12 | fveq2 5329 | . . . . . . 7 ⊢ (x = z → (F ‘x) = (F ‘z)) | |
13 | 12 | eqeq2d 2364 | . . . . . 6 ⊢ (x = z → (y = (F ‘x) ↔ y = (F ‘z))) |
14 | 11, 13 | anbi12d 691 | . . . . 5 ⊢ (x = z → ((x ∈ A ∧ y = (F ‘x)) ↔ (z ∈ A ∧ y = (F ‘z)))) |
15 | eqeq1 2359 | . . . . . 6 ⊢ (y = w → (y = (F ‘z) ↔ w = (F ‘z))) | |
16 | 15 | anbi2d 684 | . . . . 5 ⊢ (y = w → ((z ∈ A ∧ y = (F ‘z)) ↔ (z ∈ A ∧ w = (F ‘z)))) |
17 | 9, 10, 14, 16 | opelopab 4709 | . . . 4 ⊢ (〈z, w〉 ∈ {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} ↔ (z ∈ A ∧ w = (F ‘z))) |
18 | 8, 17 | syl6bbr 254 | . . 3 ⊢ (F Fn A → (〈z, w〉 ∈ F ↔ 〈z, w〉 ∈ {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))})) |
19 | 18 | eqrelrdv 4853 | . 2 ⊢ (F Fn A → F = {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))}) |
20 | fvex 5340 | . . . 4 ⊢ (F ‘x) ∈ V | |
21 | eqid 2353 | . . . 4 ⊢ {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} = {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} | |
22 | 20, 21 | fnopab2 5209 | . . 3 ⊢ {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} Fn A |
23 | fneq1 5174 | . . 3 ⊢ (F = {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} → (F Fn A ↔ {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} Fn A)) | |
24 | 22, 23 | mpbiri 224 | . 2 ⊢ (F = {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))} → F Fn A) |
25 | 19, 24 | impbii 180 | 1 ⊢ (F Fn A ↔ F = {〈x, y〉 ∣ (x ∈ A ∧ y = (F ‘x))}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 〈cop 4562 {copab 4623 Fn wfn 4777 ‘cfv 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 |
This theorem is referenced by: fopabfv 5431 fnov 5592 dffn5v 5707 |
Copyright terms: Public domain | W3C validator |