NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  fnrnfv GIF version

Theorem fnrnfv 5365
Description: The range of a function expressed as a collection of the function's values. (Contributed by set.mm contributors, 20-Oct-2005.)
Assertion
Ref Expression
fnrnfv (F Fn A → ran F = {y x A y = (Fx)})
Distinct variable groups:   x,y,A   x,F,y

Proof of Theorem fnrnfv
StepHypRef Expression
1 dfrn3 4904 . 2 ran F = {y xx, y F}
2 fnop 5187 . . . . . . . 8 ((F Fn A x, y F) → x A)
32ex 423 . . . . . . 7 (F Fn A → (x, y Fx A))
43pm4.71rd 616 . . . . . 6 (F Fn A → (x, y F ↔ (x A x, y F)))
5 fnopfvb 5360 . . . . . . 7 ((F Fn A x A) → ((Fx) = yx, y F))
65pm5.32da 622 . . . . . 6 (F Fn A → ((x A (Fx) = y) ↔ (x A x, y F)))
74, 6bitr4d 247 . . . . 5 (F Fn A → (x, y F ↔ (x A (Fx) = y)))
87exbidv 1626 . . . 4 (F Fn A → (xx, y Fx(x A (Fx) = y)))
9 eqcom 2355 . . . . . 6 (y = (Fx) ↔ (Fx) = y)
109rexbii 2640 . . . . 5 (x A y = (Fx) ↔ x A (Fx) = y)
11 df-rex 2621 . . . . 5 (x A (Fx) = yx(x A (Fx) = y))
1210, 11bitri 240 . . . 4 (x A y = (Fx) ↔ x(x A (Fx) = y))
138, 12syl6bbr 254 . . 3 (F Fn A → (xx, y Fx A y = (Fx)))
1413abbidv 2468 . 2 (F Fn A → {y xx, y F} = {y x A y = (Fx)})
151, 14syl5eq 2397 1 (F Fn A → ran F = {y x A y = (Fx)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  cop 4562  ran crn 4774   Fn wfn 4777  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796
This theorem is referenced by:  fvelrnb  5366  fniinfv  5373  dffo3  5423  fniunfv  5467  fnrnov  5606
  Copyright terms: Public domain W3C validator