![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > fnrnfv | GIF version |
Description: The range of a function expressed as a collection of the function's values. (Contributed by set.mm contributors, 20-Oct-2005.) |
Ref | Expression |
---|---|
fnrnfv | ⊢ (F Fn A → ran F = {y ∣ ∃x ∈ A y = (F ‘x)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn3 4903 | . 2 ⊢ ran F = {y ∣ ∃x〈x, y〉 ∈ F} | |
2 | fnop 5186 | . . . . . . . 8 ⊢ ((F Fn A ∧ 〈x, y〉 ∈ F) → x ∈ A) | |
3 | 2 | ex 423 | . . . . . . 7 ⊢ (F Fn A → (〈x, y〉 ∈ F → x ∈ A)) |
4 | 3 | pm4.71rd 616 | . . . . . 6 ⊢ (F Fn A → (〈x, y〉 ∈ F ↔ (x ∈ A ∧ 〈x, y〉 ∈ F))) |
5 | fnopfvb 5359 | . . . . . . 7 ⊢ ((F Fn A ∧ x ∈ A) → ((F ‘x) = y ↔ 〈x, y〉 ∈ F)) | |
6 | 5 | pm5.32da 622 | . . . . . 6 ⊢ (F Fn A → ((x ∈ A ∧ (F ‘x) = y) ↔ (x ∈ A ∧ 〈x, y〉 ∈ F))) |
7 | 4, 6 | bitr4d 247 | . . . . 5 ⊢ (F Fn A → (〈x, y〉 ∈ F ↔ (x ∈ A ∧ (F ‘x) = y))) |
8 | 7 | exbidv 1626 | . . . 4 ⊢ (F Fn A → (∃x〈x, y〉 ∈ F ↔ ∃x(x ∈ A ∧ (F ‘x) = y))) |
9 | eqcom 2355 | . . . . . 6 ⊢ (y = (F ‘x) ↔ (F ‘x) = y) | |
10 | 9 | rexbii 2639 | . . . . 5 ⊢ (∃x ∈ A y = (F ‘x) ↔ ∃x ∈ A (F ‘x) = y) |
11 | df-rex 2620 | . . . . 5 ⊢ (∃x ∈ A (F ‘x) = y ↔ ∃x(x ∈ A ∧ (F ‘x) = y)) | |
12 | 10, 11 | bitri 240 | . . . 4 ⊢ (∃x ∈ A y = (F ‘x) ↔ ∃x(x ∈ A ∧ (F ‘x) = y)) |
13 | 8, 12 | syl6bbr 254 | . . 3 ⊢ (F Fn A → (∃x〈x, y〉 ∈ F ↔ ∃x ∈ A y = (F ‘x))) |
14 | 13 | abbidv 2467 | . 2 ⊢ (F Fn A → {y ∣ ∃x〈x, y〉 ∈ F} = {y ∣ ∃x ∈ A y = (F ‘x)}) |
15 | 1, 14 | syl5eq 2397 | 1 ⊢ (F Fn A → ran F = {y ∣ ∃x ∈ A y = (F ‘x)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2615 〈cop 4561 ran crn 4773 Fn wfn 4776 ‘cfv 4781 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fv 4795 |
This theorem is referenced by: fvelrnb 5365 fniinfv 5372 dffo3 5422 fniunfv 5466 fnrnov 5605 |
Copyright terms: Public domain | W3C validator |