NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvexv GIF version

Theorem cbvexv 2003
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1 (x = y → (φψ))
Assertion
Ref Expression
cbvexv (xφyψ)
Distinct variable groups:   φ,y   ψ,x
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem cbvexv
StepHypRef Expression
1 nfv 1619 . 2 yφ
2 nfv 1619 . 2 xψ
3 cbvalv.1 . 2 (x = y → (φψ))
41, 2, 3cbvex 1985 1 (xφyψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  eujust  2206  euind  3023  reuind  3039  cbvopab2v  4636  fv3  5341
  Copyright terms: Public domain W3C validator