New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvexv | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
cbvalv.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvexv | ⊢ (∃xφ ↔ ∃yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
3 | cbvalv.1 | . 2 ⊢ (x = y → (φ ↔ ψ)) | |
4 | 1, 2, 3 | cbvex 1985 | 1 ⊢ (∃xφ ↔ ∃yψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: eujust 2206 euind 3023 reuind 3039 cbvopab2v 4636 fv3 5341 |
Copyright terms: Public domain | W3C validator |