![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > cbvopab2v | GIF version |
Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
Ref | Expression |
---|---|
cbvopab2v.1 | ⊢ (y = z → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvopab2v | ⊢ {〈x, y〉 ∣ φ} = {〈x, z〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4579 | . . . . . . 7 ⊢ (y = z → 〈x, y〉 = 〈x, z〉) | |
2 | 1 | eqeq2d 2364 | . . . . . 6 ⊢ (y = z → (w = 〈x, y〉 ↔ w = 〈x, z〉)) |
3 | cbvopab2v.1 | . . . . . 6 ⊢ (y = z → (φ ↔ ψ)) | |
4 | 2, 3 | anbi12d 691 | . . . . 5 ⊢ (y = z → ((w = 〈x, y〉 ∧ φ) ↔ (w = 〈x, z〉 ∧ ψ))) |
5 | 4 | cbvexv 2003 | . . . 4 ⊢ (∃y(w = 〈x, y〉 ∧ φ) ↔ ∃z(w = 〈x, z〉 ∧ ψ)) |
6 | 5 | exbii 1582 | . . 3 ⊢ (∃x∃y(w = 〈x, y〉 ∧ φ) ↔ ∃x∃z(w = 〈x, z〉 ∧ ψ)) |
7 | 6 | abbii 2465 | . 2 ⊢ {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} = {w ∣ ∃x∃z(w = 〈x, z〉 ∧ ψ)} |
8 | df-opab 4623 | . 2 ⊢ {〈x, y〉 ∣ φ} = {w ∣ ∃x∃y(w = 〈x, y〉 ∧ φ)} | |
9 | df-opab 4623 | . 2 ⊢ {〈x, z〉 ∣ ψ} = {w ∣ ∃x∃z(w = 〈x, z〉 ∧ ψ)} | |
10 | 7, 8, 9 | 3eqtr4i 2383 | 1 ⊢ {〈x, y〉 ∣ φ} = {〈x, z〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 {cab 2339 〈cop 4561 {copab 4622 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-opab 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |