NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvopab2v GIF version

Theorem cbvopab2v 4637
Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.)
Hypothesis
Ref Expression
cbvopab2v.1 (y = z → (φψ))
Assertion
Ref Expression
cbvopab2v {x, y φ} = {x, z ψ}
Distinct variable groups:   x,y,z   φ,z   ψ,y
Allowed substitution hints:   φ(x,y)   ψ(x,z)

Proof of Theorem cbvopab2v
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 opeq2 4580 . . . . . . 7 (y = zx, y = x, z)
21eqeq2d 2364 . . . . . 6 (y = z → (w = x, yw = x, z))
3 cbvopab2v.1 . . . . . 6 (y = z → (φψ))
42, 3anbi12d 691 . . . . 5 (y = z → ((w = x, y φ) ↔ (w = x, z ψ)))
54cbvexv 2003 . . . 4 (y(w = x, y φ) ↔ z(w = x, z ψ))
65exbii 1582 . . 3 (xy(w = x, y φ) ↔ xz(w = x, z ψ))
76abbii 2466 . 2 {w xy(w = x, y φ)} = {w xz(w = x, z ψ)}
8 df-opab 4624 . 2 {x, y φ} = {w xy(w = x, y φ)}
9 df-opab 4624 . 2 {x, z ψ} = {w xz(w = x, z ψ)}
107, 8, 93eqtr4i 2383 1 {x, y φ} = {x, z ψ}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642  {cab 2339  cop 4562  {copab 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator