New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsexg | GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.) |
Ref | Expression |
---|---|
ceqsexg.1 | ⊢ Ⅎxψ |
ceqsexg.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ceqsexg | ⊢ (A ∈ V → (∃x(x = A ∧ φ) ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 ⊢ ℲxA | |
2 | nfe1 1732 | . . 3 ⊢ Ⅎx∃x(x = A ∧ φ) | |
3 | ceqsexg.1 | . . 3 ⊢ Ⅎxψ | |
4 | 2, 3 | nfbi 1834 | . 2 ⊢ Ⅎx(∃x(x = A ∧ φ) ↔ ψ) |
5 | ceqex 2970 | . . 3 ⊢ (x = A → (φ ↔ ∃x(x = A ∧ φ))) | |
6 | ceqsexg.2 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
7 | 5, 6 | bibi12d 312 | . 2 ⊢ (x = A → ((φ ↔ φ) ↔ (∃x(x = A ∧ φ) ↔ ψ))) |
8 | biid 227 | . 2 ⊢ (φ ↔ φ) | |
9 | 1, 4, 7, 8 | vtoclgf 2914 | 1 ⊢ (A ∈ V → (∃x(x = A ∧ φ) ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: ceqsexgv 2972 |
Copyright terms: Public domain | W3C validator |