Step | Hyp | Ref
| Expression |
1 | | 19.8a 1756 |
. . 3
⊢ (x = A →
∃x
x = A) |
2 | | isset 2864 |
. . 3
⊢ (A ∈ V ↔ ∃x x = A) |
3 | 1, 2 | sylibr 203 |
. 2
⊢ (x = A →
A ∈
V) |
4 | | eqeq2 2362 |
. . . 4
⊢ (y = A →
(x = y
↔ x = A)) |
5 | 4 | anbi1d 685 |
. . . . . 6
⊢ (y = A →
((x = y
∧ φ)
↔ (x = A ∧ φ))) |
6 | 5 | exbidv 1626 |
. . . . 5
⊢ (y = A →
(∃x(x = y ∧ φ) ↔ ∃x(x = A ∧ φ))) |
7 | 6 | bibi2d 309 |
. . . 4
⊢ (y = A →
((φ ↔ ∃x(x = y ∧ φ)) ↔
(φ ↔ ∃x(x = A ∧ φ)))) |
8 | 4, 7 | imbi12d 311 |
. . 3
⊢ (y = A →
((x = y
→ (φ ↔ ∃x(x = y ∧ φ)))
↔ (x = A → (φ
↔ ∃x(x = A ∧ φ))))) |
9 | | 19.8a 1756 |
. . . . 5
⊢ ((x = y ∧ φ) →
∃x(x = y ∧ φ)) |
10 | 9 | ex 423 |
. . . 4
⊢ (x = y →
(φ → ∃x(x = y ∧ φ))) |
11 | | vex 2863 |
. . . . . 6
⊢ y ∈
V |
12 | 11 | alexeq 2969 |
. . . . 5
⊢ (∀x(x = y →
φ) ↔ ∃x(x = y ∧ φ)) |
13 | | sp 1747 |
. . . . . 6
⊢ (∀x(x = y →
φ) → (x = y →
φ)) |
14 | 13 | com12 27 |
. . . . 5
⊢ (x = y →
(∀x(x = y → φ)
→ φ)) |
15 | 12, 14 | syl5bir 209 |
. . . 4
⊢ (x = y →
(∃x(x = y ∧ φ) → φ)) |
16 | 10, 15 | impbid 183 |
. . 3
⊢ (x = y →
(φ ↔ ∃x(x = y ∧ φ))) |
17 | 8, 16 | vtoclg 2915 |
. 2
⊢ (A ∈ V →
(x = A
→ (φ ↔ ∃x(x = A ∧ φ)))) |
18 | 3, 17 | mpcom 32 |
1
⊢ (x = A →
(φ ↔ ∃x(x = A ∧ φ))) |