New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsralv | GIF version |
Description: Restricted quantifier version of ceqsalv 2886. (Contributed by NM, 21-Jun-2013.) |
Ref | Expression |
---|---|
ceqsralv.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
ceqsralv | ⊢ (A ∈ B → (∀x ∈ B (x = A → φ) ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxψ | |
2 | ceqsralv.2 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
3 | 2 | ax-gen 1546 | . 2 ⊢ ∀x(x = A → (φ ↔ ψ)) |
4 | ceqsralt 2883 | . 2 ⊢ ((Ⅎxψ ∧ ∀x(x = A → (φ ↔ ψ)) ∧ A ∈ B) → (∀x ∈ B (x = A → φ) ↔ ψ)) | |
5 | 1, 3, 4 | mp3an12 1267 | 1 ⊢ (A ∈ B → (∀x ∈ B (x = A → φ) ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-v 2862 |
This theorem is referenced by: eqreu 3029 |
Copyright terms: Public domain | W3C validator |