NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cnveqi GIF version

Theorem cnveqi 4887
Description: Equality inference for converse. (Contributed by set.mm contributors, 23-Dec-2008.)
Hypothesis
Ref Expression
cnveqi.1 A = B
Assertion
Ref Expression
cnveqi A = B

Proof of Theorem cnveqi
StepHypRef Expression
1 cnveqi.1 . 2 A = B
2 cnveq 4886 . 2 (A = BA = B)
31, 2ax-mp 5 1 A = B
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  ccnv 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-opab 4623  df-br 4640  df-cnv 4785
This theorem is referenced by:  cnvin  5035  cnvxp  5043  xp0  5044  cnvtr  5098  fun11iun  5305  mptpreima  5682  f1od  5726  cnvpprod  5841  scancan  6331
  Copyright terms: Public domain W3C validator