New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cnveq | GIF version |
Description: Equality theorem for converse. (Contributed by set.mm contributors, 13-Aug-1995.) |
Ref | Expression |
---|---|
cnveq | ⊢ (A = B → ◡A = ◡B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 4886 | . . 3 ⊢ (A ⊆ B → ◡A ⊆ ◡B) | |
2 | cnvss 4886 | . . 3 ⊢ (B ⊆ A → ◡B ⊆ ◡A) | |
3 | 1, 2 | anim12i 549 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) → (◡A ⊆ ◡B ∧ ◡B ⊆ ◡A)) |
4 | eqss 3288 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
5 | eqss 3288 | . 2 ⊢ (◡A = ◡B ↔ (◡A ⊆ ◡B ∧ ◡B ⊆ ◡A)) | |
6 | 3, 4, 5 | 3imtr4i 257 | 1 ⊢ (A = B → ◡A = ◡B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ⊆ wss 3258 ◡ccnv 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-cnv 4786 |
This theorem is referenced by: cnveqi 4888 cnveqd 4889 cnveqb 5064 funcnvuni 5162 f1eq1 5254 f1o00 5318 enprmaplem3 6079 enprmaplem5 6081 enprmaplem6 6082 |
Copyright terms: Public domain | W3C validator |