NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cokeq12i GIF version

Theorem cokeq12i 4237
Description: Equality inference for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
Hypotheses
Ref Expression
cokeq12i.1 A = B
cokeq12i.2 C = D
Assertion
Ref Expression
cokeq12i (A k C) = (B k D)

Proof of Theorem cokeq12i
StepHypRef Expression
1 cokeq12i.1 . . 3 A = B
21cokeq1i 4233 . 2 (A k C) = (B k C)
3 cokeq12i.2 . . 3 C = D
43cokeq2i 4234 . 2 (B k C) = (B k D)
52, 4eqtri 2373 1 (A k C) = (B k D)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   k ccomk 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator