NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cokeq2d GIF version

Theorem cokeq2d 4236
Description: Equality deduction for Kuratowski composition of two classes. (Contributed by SF, 12-Jan-2015.)
Hypothesis
Ref Expression
cokeq1d.1 (φA = B)
Assertion
Ref Expression
cokeq2d (φ → (C k A) = (C k B))

Proof of Theorem cokeq2d
StepHypRef Expression
1 cokeq1d.1 . 2 (φA = B)
2 cokeq2 4232 . 2 (A = B → (C k A) = (C k B))
31, 2syl 15 1 (φ → (C k A) = (C k B))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   k ccomk 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-cnvk 4187  df-ins3k 4189  df-imak 4190  df-cok 4191
This theorem is referenced by:  cokeq12d  4238  imagekeq  4245
  Copyright terms: Public domain W3C validator