Step | Hyp | Ref
| Expression |
1 | | fveq2 5329 |
. . . . 5
⊢ (y = x →
(F ‘y) = (F
‘x)) |
2 | | eqid 2353 |
. . . . 5
⊢ {〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))} =
{〈y,
z〉 ∣ (y ∈ A ∧ z = (F ‘y))} |
3 | | fvex 5340 |
. . . . 5
⊢ (F ‘x)
∈ V |
4 | 1, 2, 3 | fvopab4 5390 |
. . . 4
⊢ (x ∈ A → ({〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))}
‘x) = (F ‘x)) |
5 | 4 | iuneq2i 3988 |
. . 3
⊢ ∪x ∈ A ({〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))}
‘x) = ∪x ∈ A (F ‘x) |
6 | | fvex 5340 |
. . . . 5
⊢ (F ‘y)
∈ V |
7 | 6, 2 | fnopab2 5209 |
. . . 4
⊢ {〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))} Fn
A |
8 | | fniunfv 5467 |
. . . 4
⊢ ({〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))} Fn
A → ∪x ∈ A ({〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))}
‘x) = ∪ran
{〈y,
z〉 ∣ (y ∈ A ∧ z = (F ‘y))}) |
9 | 7, 8 | ax-mp 5 |
. . 3
⊢ ∪x ∈ A ({〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))}
‘x) = ∪ran
{〈y,
z〉 ∣ (y ∈ A ∧ z = (F ‘y))} |
10 | 5, 9 | eqtr3i 2375 |
. 2
⊢ ∪x ∈ A (F ‘x) =
∪ran {〈y, z〉 ∣ (y ∈ A ∧ z = (F
‘y))} |
11 | | rnopab2 4969 |
. . . 4
⊢ ran {〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))} =
{z ∣
∃y ∈ A z = (F
‘y)} |
12 | 11 | unieqi 3902 |
. . 3
⊢ ∪ran {〈y, z〉 ∣ (y ∈ A ∧ z = (F
‘y))} = ∪{z ∣ ∃y ∈ A z = (F ‘y)} |
13 | | eqcom 2355 |
. . . . . . . . 9
⊢ (z = (F
‘y) ↔ (F ‘y) =
z) |
14 | | idd 21 |
. . . . . . . . . 10
⊢ ((Fun F ∧ w ∈ z) → ((F
‘y) = z → (F
‘y) = z)) |
15 | | funbrfv 5357 |
. . . . . . . . . . 11
⊢ (Fun F → (yFz → (F
‘y) = z)) |
16 | 15 | adantr 451 |
. . . . . . . . . 10
⊢ ((Fun F ∧ w ∈ z) → (yFz → (F
‘y) = z)) |
17 | | n0i 3556 |
. . . . . . . . . . . . 13
⊢ (w ∈ z → ¬ z
= ∅) |
18 | | ndmfv 5350 |
. . . . . . . . . . . . . . 15
⊢ (¬ y ∈ dom F → (F
‘y) = ∅) |
19 | | eqeq1 2359 |
. . . . . . . . . . . . . . 15
⊢ ((F ‘y) =
z → ((F ‘y) =
∅ ↔ z = ∅)) |
20 | 18, 19 | syl5ib 210 |
. . . . . . . . . . . . . 14
⊢ ((F ‘y) =
z → (¬ y ∈ dom F → z =
∅)) |
21 | 20 | con1d 116 |
. . . . . . . . . . . . 13
⊢ ((F ‘y) =
z → (¬ z = ∅ →
y ∈ dom
F)) |
22 | 17, 21 | mpan9 455 |
. . . . . . . . . . . 12
⊢ ((w ∈ z ∧ (F ‘y) =
z) → y ∈ dom F) |
23 | | funbrfvb 5361 |
. . . . . . . . . . . 12
⊢ ((Fun F ∧ y ∈ dom F) → ((F
‘y) = z ↔ yFz)) |
24 | 22, 23 | sylan2 460 |
. . . . . . . . . . 11
⊢ ((Fun F ∧ (w ∈ z ∧ (F ‘y) =
z)) → ((F ‘y) =
z ↔ yFz)) |
25 | 24 | expr 598 |
. . . . . . . . . 10
⊢ ((Fun F ∧ w ∈ z) → ((F
‘y) = z → ((F
‘y) = z ↔ yFz))) |
26 | 14, 16, 25 | pm5.21ndd 343 |
. . . . . . . . 9
⊢ ((Fun F ∧ w ∈ z) → ((F
‘y) = z ↔ yFz)) |
27 | 13, 26 | syl5bb 248 |
. . . . . . . 8
⊢ ((Fun F ∧ w ∈ z) → (z =
(F ‘y) ↔ yFz)) |
28 | 27 | rexbidv 2636 |
. . . . . . 7
⊢ ((Fun F ∧ w ∈ z) → (∃y ∈ A z = (F
‘y) ↔ ∃y ∈ A yFz)) |
29 | 28 | pm5.32da 622 |
. . . . . 6
⊢ (Fun F → ((w
∈ z ∧ ∃y ∈ A z = (F ‘y))
↔ (w ∈ z ∧ ∃y ∈ A yFz))) |
30 | 29 | exbidv 1626 |
. . . . 5
⊢ (Fun F → (∃z(w ∈ z ∧ ∃y ∈ A z = (F
‘y)) ↔ ∃z(w ∈ z ∧ ∃y ∈ A yFz))) |
31 | | eluniab 3904 |
. . . . 5
⊢ (w ∈ ∪{z ∣ ∃y ∈ A z = (F ‘y)}
↔ ∃z(w ∈ z ∧ ∃y ∈ A z = (F ‘y))) |
32 | | eluni 3895 |
. . . . . 6
⊢ (w ∈ ∪(F “ A) ↔ ∃z(w ∈ z ∧ z ∈ (F “ A))) |
33 | | elima 4755 |
. . . . . . . 8
⊢ (z ∈ (F “ A)
↔ ∃y ∈ A yFz) |
34 | 33 | anbi2i 675 |
. . . . . . 7
⊢ ((w ∈ z ∧ z ∈ (F “ A))
↔ (w ∈ z ∧ ∃y ∈ A yFz)) |
35 | 34 | exbii 1582 |
. . . . . 6
⊢ (∃z(w ∈ z ∧ z ∈ (F “ A))
↔ ∃z(w ∈ z ∧ ∃y ∈ A yFz)) |
36 | 32, 35 | bitri 240 |
. . . . 5
⊢ (w ∈ ∪(F “ A) ↔ ∃z(w ∈ z ∧ ∃y ∈ A yFz)) |
37 | 30, 31, 36 | 3bitr4g 279 |
. . . 4
⊢ (Fun F → (w
∈ ∪{z ∣ ∃y ∈ A z = (F
‘y)} ↔ w ∈ ∪(F “ A))) |
38 | 37 | eqrdv 2351 |
. . 3
⊢ (Fun F → ∪{z ∣ ∃y ∈ A z = (F
‘y)} = ∪(F “ A)) |
39 | 12, 38 | syl5eq 2397 |
. 2
⊢ (Fun F → ∪ran {〈y, z〉 ∣ (y ∈ A ∧ z = (F ‘y))} =
∪(F “
A)) |
40 | 10, 39 | syl5eq 2397 |
1
⊢ (Fun F → ∪x ∈ A (F
‘x) = ∪(F “ A)) |