NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funiunfv GIF version

Theorem funiunfv 5468
Description: The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to F Fn A, the theorem can be proved without this dependency. (Contributed by set.mm contributors, 26-Mar-2006.)

Assertion
Ref Expression
funiunfv (Fun Fx A (Fx) = (FA))
Distinct variable groups:   x,A   x,F

Proof of Theorem funiunfv
Dummy variables w y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5329 . . . . 5 (y = x → (Fy) = (Fx))
2 eqid 2353 . . . . 5 {y, z (y A z = (Fy))} = {y, z (y A z = (Fy))}
3 fvex 5340 . . . . 5 (Fx) V
41, 2, 3fvopab4 5390 . . . 4 (x A → ({y, z (y A z = (Fy))} ‘x) = (Fx))
54iuneq2i 3988 . . 3 x A ({y, z (y A z = (Fy))} ‘x) = x A (Fx)
6 fvex 5340 . . . . 5 (Fy) V
76, 2fnopab2 5209 . . . 4 {y, z (y A z = (Fy))} Fn A
8 fniunfv 5467 . . . 4 ({y, z (y A z = (Fy))} Fn Ax A ({y, z (y A z = (Fy))} ‘x) = ran {y, z (y A z = (Fy))})
97, 8ax-mp 5 . . 3 x A ({y, z (y A z = (Fy))} ‘x) = ran {y, z (y A z = (Fy))}
105, 9eqtr3i 2375 . 2 x A (Fx) = ran {y, z (y A z = (Fy))}
11 rnopab2 4969 . . . 4 ran {y, z (y A z = (Fy))} = {z y A z = (Fy)}
1211unieqi 3902 . . 3 ran {y, z (y A z = (Fy))} = {z y A z = (Fy)}
13 eqcom 2355 . . . . . . . . 9 (z = (Fy) ↔ (Fy) = z)
14 idd 21 . . . . . . . . . 10 ((Fun F w z) → ((Fy) = z → (Fy) = z))
15 funbrfv 5357 . . . . . . . . . . 11 (Fun F → (yFz → (Fy) = z))
1615adantr 451 . . . . . . . . . 10 ((Fun F w z) → (yFz → (Fy) = z))
17 n0i 3556 . . . . . . . . . . . . 13 (w z → ¬ z = )
18 ndmfv 5350 . . . . . . . . . . . . . . 15 y dom F → (Fy) = )
19 eqeq1 2359 . . . . . . . . . . . . . . 15 ((Fy) = z → ((Fy) = z = ))
2018, 19syl5ib 210 . . . . . . . . . . . . . 14 ((Fy) = z → (¬ y dom Fz = ))
2120con1d 116 . . . . . . . . . . . . 13 ((Fy) = z → (¬ z = y dom F))
2217, 21mpan9 455 . . . . . . . . . . . 12 ((w z (Fy) = z) → y dom F)
23 funbrfvb 5361 . . . . . . . . . . . 12 ((Fun F y dom F) → ((Fy) = zyFz))
2422, 23sylan2 460 . . . . . . . . . . 11 ((Fun F (w z (Fy) = z)) → ((Fy) = zyFz))
2524expr 598 . . . . . . . . . 10 ((Fun F w z) → ((Fy) = z → ((Fy) = zyFz)))
2614, 16, 25pm5.21ndd 343 . . . . . . . . 9 ((Fun F w z) → ((Fy) = zyFz))
2713, 26syl5bb 248 . . . . . . . 8 ((Fun F w z) → (z = (Fy) ↔ yFz))
2827rexbidv 2636 . . . . . . 7 ((Fun F w z) → (y A z = (Fy) ↔ y A yFz))
2928pm5.32da 622 . . . . . 6 (Fun F → ((w z y A z = (Fy)) ↔ (w z y A yFz)))
3029exbidv 1626 . . . . 5 (Fun F → (z(w z y A z = (Fy)) ↔ z(w z y A yFz)))
31 eluniab 3904 . . . . 5 (w {z y A z = (Fy)} ↔ z(w z y A z = (Fy)))
32 eluni 3895 . . . . . 6 (w (FA) ↔ z(w z z (FA)))
33 elima 4755 . . . . . . . 8 (z (FA) ↔ y A yFz)
3433anbi2i 675 . . . . . . 7 ((w z z (FA)) ↔ (w z y A yFz))
3534exbii 1582 . . . . . 6 (z(w z z (FA)) ↔ z(w z y A yFz))
3632, 35bitri 240 . . . . 5 (w (FA) ↔ z(w z y A yFz))
3730, 31, 363bitr4g 279 . . . 4 (Fun F → (w {z y A z = (Fy)} ↔ w (FA)))
3837eqrdv 2351 . . 3 (Fun F{z y A z = (Fy)} = (FA))
3912, 38syl5eq 2397 . 2 (Fun Fran {y, z (y A z = (Fy))} = (FA))
4010, 39syl5eq 2397 1 (Fun Fx A (Fx) = (FA))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  c0 3551  cuni 3892  ciun 3970  {copab 4623   class class class wbr 4640  cima 4723  dom cdm 4773  ran crn 4774  Fun wfun 4776   Fn wfn 4777  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796
This theorem is referenced by:  funiunfvf  5469  eluniima  5470
  Copyright terms: Public domain W3C validator