NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralf0 GIF version

Theorem ralf0 3657
Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.)
Hypothesis
Ref Expression
ralf0.1 ¬ φ
Assertion
Ref Expression
ralf0 (x A φA = )
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem ralf0
StepHypRef Expression
1 ralf0.1 . . . . 5 ¬ φ
2 con3 126 . . . . 5 ((x Aφ) → (¬ φ → ¬ x A))
31, 2mpi 16 . . . 4 ((x Aφ) → ¬ x A)
43alimi 1559 . . 3 (x(x Aφ) → x ¬ x A)
5 df-ral 2620 . . 3 (x A φx(x Aφ))
6 eq0 3565 . . 3 (A = x ¬ x A)
74, 5, 63imtr4i 257 . 2 (x A φA = )
8 rzal 3652 . 2 (A = x A φ)
97, 8impbii 180 1 (x A φA = )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176  wal 1540   = wceq 1642   wcel 1710  wral 2615  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator