| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ralf0 | GIF version | ||
| Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005.) |
| Ref | Expression |
|---|---|
| ralf0.1 | ⊢ ¬ φ |
| Ref | Expression |
|---|---|
| ralf0 | ⊢ (∀x ∈ A φ ↔ A = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralf0.1 | . . . . 5 ⊢ ¬ φ | |
| 2 | con3 126 | . . . . 5 ⊢ ((x ∈ A → φ) → (¬ φ → ¬ x ∈ A)) | |
| 3 | 1, 2 | mpi 16 | . . . 4 ⊢ ((x ∈ A → φ) → ¬ x ∈ A) |
| 4 | 3 | alimi 1559 | . . 3 ⊢ (∀x(x ∈ A → φ) → ∀x ¬ x ∈ A) |
| 5 | df-ral 2620 | . . 3 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
| 6 | eq0 3565 | . . 3 ⊢ (A = ∅ ↔ ∀x ¬ x ∈ A) | |
| 7 | 4, 5, 6 | 3imtr4i 257 | . 2 ⊢ (∀x ∈ A φ → A = ∅) |
| 8 | rzal 3652 | . 2 ⊢ (A = ∅ → ∀x ∈ A φ) | |
| 9 | 7, 8 | impbii 180 | 1 ⊢ (∀x ∈ A φ ↔ A = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∅c0 3551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |