New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbidmg | GIF version |
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) |
Ref | Expression |
---|---|
csbidmg | ⊢ (A ∈ V → [A / x][A / x]B = [A / x]B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ V → A ∈ V) | |
2 | csbnest1g 3189 | . . 3 ⊢ (A ∈ V → [A / x][A / x]B = [[A / x]A / x]B) | |
3 | csbconstg 3151 | . . . 4 ⊢ (A ∈ V → [A / x]A = A) | |
4 | 3 | csbeq1d 3143 | . . 3 ⊢ (A ∈ V → [[A / x]A / x]B = [A / x]B) |
5 | 2, 4 | eqtrd 2385 | . 2 ⊢ (A ∈ V → [A / x][A / x]B = [A / x]B) |
6 | 1, 5 | syl 15 | 1 ⊢ (A ∈ V → [A / x][A / x]B = [A / x]B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 Vcvv 2860 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |