NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbeq2dv GIF version

Theorem csbeq2dv 3162
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2dv.1 (φB = C)
Assertion
Ref Expression
csbeq2dv (φ[A / x]B = [A / x]C)
Distinct variable group:   φ,x
Allowed substitution hints:   A(x)   B(x)   C(x)

Proof of Theorem csbeq2dv
StepHypRef Expression
1 nfv 1619 . 2 xφ
2 csbeq2dv.1 . 2 (φB = C)
31, 2csbeq2d 3161 1 (φ[A / x]B = [A / x]C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  [csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbeq2i  3163  fmpt2x  5731
  Copyright terms: Public domain W3C validator