| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > csbeq2i | GIF version | ||
| Description: Formula-building inference rule for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ B = C |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ [A / x]B = [A / x]C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ B = C | |
| 2 | 1 | a1i 10 | . . 3 ⊢ ( ⊤ → B = C) |
| 3 | 2 | csbeq2dv 3162 | . 2 ⊢ ( ⊤ → [A / x]B = [A / x]C) |
| 4 | 3 | trud 1323 | 1 ⊢ [A / x]B = [A / x]C |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤ wtru 1316 = wceq 1642 [csb 3137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3048 df-csb 3138 |
| This theorem is referenced by: csbvarg 3164 csbnest1g 3189 csbsng 3786 csbunig 3900 csbxpg 4814 csbrng 4967 csbresg 4977 csbfv12g 5337 |
| Copyright terms: Public domain | W3C validator |