NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  disjssun GIF version

Theorem disjssun 3609
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjssun ((AB) = → (A (BC) ↔ A C))

Proof of Theorem disjssun
StepHypRef Expression
1 indi 3502 . . . . 5 (A ∩ (BC)) = ((AB) ∪ (AC))
21equncomi 3411 . . . 4 (A ∩ (BC)) = ((AC) ∪ (AB))
3 uneq2 3413 . . . . 5 ((AB) = → ((AC) ∪ (AB)) = ((AC) ∪ ))
4 un0 3576 . . . . 5 ((AC) ∪ ) = (AC)
53, 4syl6eq 2401 . . . 4 ((AB) = → ((AC) ∪ (AB)) = (AC))
62, 5syl5eq 2397 . . 3 ((AB) = → (A ∩ (BC)) = (AC))
76eqeq1d 2361 . 2 ((AB) = → ((A ∩ (BC)) = A ↔ (AC) = A))
8 df-ss 3260 . 2 (A (BC) ↔ (A ∩ (BC)) = A)
9 df-ss 3260 . 2 (A C ↔ (AC) = A)
107, 8, 93bitr4g 279 1 ((AB) = → (A (BC) ↔ A C))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  cun 3208  cin 3209   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator