New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > disjssun | GIF version |
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjssun | ⊢ ((A ∩ B) = ∅ → (A ⊆ (B ∪ C) ↔ A ⊆ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indi 3502 | . . . . 5 ⊢ (A ∩ (B ∪ C)) = ((A ∩ B) ∪ (A ∩ C)) | |
2 | 1 | equncomi 3411 | . . . 4 ⊢ (A ∩ (B ∪ C)) = ((A ∩ C) ∪ (A ∩ B)) |
3 | uneq2 3413 | . . . . 5 ⊢ ((A ∩ B) = ∅ → ((A ∩ C) ∪ (A ∩ B)) = ((A ∩ C) ∪ ∅)) | |
4 | un0 3576 | . . . . 5 ⊢ ((A ∩ C) ∪ ∅) = (A ∩ C) | |
5 | 3, 4 | syl6eq 2401 | . . . 4 ⊢ ((A ∩ B) = ∅ → ((A ∩ C) ∪ (A ∩ B)) = (A ∩ C)) |
6 | 2, 5 | syl5eq 2397 | . . 3 ⊢ ((A ∩ B) = ∅ → (A ∩ (B ∪ C)) = (A ∩ C)) |
7 | 6 | eqeq1d 2361 | . 2 ⊢ ((A ∩ B) = ∅ → ((A ∩ (B ∪ C)) = A ↔ (A ∩ C) = A)) |
8 | df-ss 3260 | . 2 ⊢ (A ⊆ (B ∪ C) ↔ (A ∩ (B ∪ C)) = A) | |
9 | df-ss 3260 | . 2 ⊢ (A ⊆ C ↔ (A ∩ C) = A) | |
10 | 7, 8, 9 | 3bitr4g 279 | 1 ⊢ ((A ∩ B) = ∅ → (A ⊆ (B ∪ C) ↔ A ⊆ C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∪ cun 3208 ∩ cin 3209 ⊆ wss 3258 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |