Proof of Theorem dfiota4
Step | Hyp | Ref
| Expression |
1 | | iotauni 4352 |
. . 3
⊢ (∃!xφ → (℩xφ) = ∪{x ∣ φ}) |
2 | | dfeu2 4334 |
. . . . . . . 8
⊢ (∃!xφ ↔ {x ∣ φ} ∈
1c) |
3 | | snssi 3853 |
. . . . . . . 8
⊢ ({x ∣ φ} ∈
1c → {{x ∣ φ}}
⊆ 1c) |
4 | 2, 3 | sylbi 187 |
. . . . . . 7
⊢ (∃!xφ → {{x ∣ φ}} ⊆
1c) |
5 | | df-ss 3260 |
. . . . . . . 8
⊢ ({{x ∣ φ}} ⊆
1c ↔ ({{x ∣ φ}}
∩ 1c) = {{x ∣ φ}}) |
6 | | incom 3449 |
. . . . . . . . 9
⊢ ({{x ∣ φ}} ∩ 1c) =
(1c ∩ {{x ∣ φ}}) |
7 | 6 | eqeq1i 2360 |
. . . . . . . 8
⊢ (({{x ∣ φ}} ∩ 1c) = {{x ∣ φ}} ↔ (1c ∩
{{x ∣
φ}}) = {{x ∣ φ}}) |
8 | 5, 7 | bitri 240 |
. . . . . . 7
⊢ ({{x ∣ φ}} ⊆
1c ↔ (1c ∩ {{x ∣ φ}}) = {{x ∣ φ}}) |
9 | 4, 8 | sylib 188 |
. . . . . 6
⊢ (∃!xφ → (1c ∩
{{x ∣
φ}}) = {{x ∣ φ}}) |
10 | 9 | unieqd 3903 |
. . . . 5
⊢ (∃!xφ → ∪(1c ∩ {{x ∣ φ}}) = ∪{{x ∣ φ}}) |
11 | | euabex 4335 |
. . . . . 6
⊢ (∃!xφ → {x ∣ φ} ∈
V) |
12 | | unisng 3909 |
. . . . . 6
⊢ ({x ∣ φ} ∈ V
→ ∪{{x
∣ φ}} = {x
∣ φ}) |
13 | 11, 12 | syl 15 |
. . . . 5
⊢ (∃!xφ → ∪{{x ∣ φ}} =
{x ∣
φ}) |
14 | 10, 13 | eqtrd 2385 |
. . . 4
⊢ (∃!xφ → ∪(1c ∩ {{x ∣ φ}}) = {x
∣ φ}) |
15 | 14 | unieqd 3903 |
. . 3
⊢ (∃!xφ → ∪∪(1c ∩ {{x ∣ φ}}) = ∪{x ∣ φ}) |
16 | 1, 15 | eqtr4d 2388 |
. 2
⊢ (∃!xφ → (℩xφ) = ∪∪(1c ∩
{{x ∣
φ}})) |
17 | | iotanul 4355 |
. . 3
⊢ (¬ ∃!xφ → (℩xφ) = ∅) |
18 | 2 | notbii 287 |
. . . . . . . 8
⊢ (¬ ∃!xφ ↔ ¬ {x ∣ φ} ∈
1c) |
19 | | disjsn 3787 |
. . . . . . . 8
⊢
((1c ∩ {{x
∣ φ}}) = ∅
↔ ¬ {x ∣ φ} ∈ 1c) |
20 | 18, 19 | bitr4i 243 |
. . . . . . 7
⊢ (¬ ∃!xφ ↔ (1c ∩
{{x ∣
φ}}) = ∅) |
21 | 20 | biimpi 186 |
. . . . . 6
⊢ (¬ ∃!xφ → (1c ∩
{{x ∣
φ}}) = ∅) |
22 | 21 | unieqd 3903 |
. . . . 5
⊢ (¬ ∃!xφ → ∪(1c ∩ {{x ∣ φ}}) = ∪∅) |
23 | 22 | unieqd 3903 |
. . . 4
⊢ (¬ ∃!xφ → ∪∪(1c ∩ {{x ∣ φ}}) = ∪∪∅) |
24 | | uni0 3919 |
. . . . . 6
⊢ ∪∅ = ∅ |
25 | 24 | unieqi 3902 |
. . . . 5
⊢ ∪∪∅ = ∪∅ |
26 | 25, 24 | eqtri 2373 |
. . . 4
⊢ ∪∪∅ = ∅ |
27 | 23, 26 | syl6eq 2401 |
. . 3
⊢ (¬ ∃!xφ → ∪∪(1c ∩ {{x ∣ φ}}) = ∅) |
28 | 17, 27 | eqtr4d 2388 |
. 2
⊢ (¬ ∃!xφ → (℩xφ) = ∪∪(1c ∩
{{x ∣
φ}})) |
29 | 16, 28 | pm2.61i 156 |
1
⊢ (℩xφ) = ∪∪(1c ∩
{{x ∣
φ}}) |