New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > riinn0 | GIF version |
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riinn0 | ⊢ ((∀x ∈ X S ⊆ A ∧ X ≠ ∅) → (A ∩ ∩x ∈ X S) = ∩x ∈ X S) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3449 | . 2 ⊢ (A ∩ ∩x ∈ X S) = (∩x ∈ X S ∩ A) | |
2 | r19.2z 3640 | . . . . 5 ⊢ ((X ≠ ∅ ∧ ∀x ∈ X S ⊆ A) → ∃x ∈ X S ⊆ A) | |
3 | 2 | ancoms 439 | . . . 4 ⊢ ((∀x ∈ X S ⊆ A ∧ X ≠ ∅) → ∃x ∈ X S ⊆ A) |
4 | iinss 4018 | . . . 4 ⊢ (∃x ∈ X S ⊆ A → ∩x ∈ X S ⊆ A) | |
5 | 3, 4 | syl 15 | . . 3 ⊢ ((∀x ∈ X S ⊆ A ∧ X ≠ ∅) → ∩x ∈ X S ⊆ A) |
6 | df-ss 3260 | . . 3 ⊢ (∩x ∈ X S ⊆ A ↔ (∩x ∈ X S ∩ A) = ∩x ∈ X S) | |
7 | 5, 6 | sylib 188 | . 2 ⊢ ((∀x ∈ X S ⊆ A ∧ X ≠ ∅) → (∩x ∈ X S ∩ A) = ∩x ∈ X S) |
8 | 1, 7 | syl5eq 2397 | 1 ⊢ ((∀x ∈ X S ⊆ A ∧ X ≠ ∅) → (A ∩ ∩x ∈ X S) = ∩x ∈ X S) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ≠ wne 2517 ∀wral 2615 ∃wrex 2616 ∩ cin 3209 ⊆ wss 3258 ∅c0 3551 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-iin 3973 |
This theorem is referenced by: riinrab 4042 |
Copyright terms: Public domain | W3C validator |