NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssdif0 GIF version

Theorem ssdif0 3610
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
ssdif0 (A B ↔ (A B) = )

Proof of Theorem ssdif0
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 iman 413 . . . 4 ((x Ax B) ↔ ¬ (x A ¬ x B))
2 eldif 3222 . . . 4 (x (A B) ↔ (x A ¬ x B))
31, 2xchbinxr 302 . . 3 ((x Ax B) ↔ ¬ x (A B))
43albii 1566 . 2 (x(x Ax B) ↔ x ¬ x (A B))
5 dfss2 3263 . 2 (A Bx(x Ax B))
6 eq0 3565 . 2 ((A B) = x ¬ x (A B))
74, 5, 63bitr4i 268 1 (A B ↔ (A B) = )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710   cdif 3207   wss 3258  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552
This theorem is referenced by:  vdif0  3611  pssdifn0  3612  difid  3619  difin0  3624  sfinltfin  4536
  Copyright terms: Public domain W3C validator