NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rintn0 GIF version

Theorem rintn0 4057
Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
rintn0 ((X A X) → (AX) = X)

Proof of Theorem rintn0
StepHypRef Expression
1 incom 3449 . 2 (AX) = (XA)
2 intssuni2 3952 . . . 4 ((X A X) → X A)
3 ssid 3291 . . . . 5 A A
4 sspwuni 4052 . . . . 5 (A AA A)
53, 4mpbi 199 . . . 4 A A
62, 5syl6ss 3285 . . 3 ((X A X) → X A)
7 df-ss 3260 . . 3 (X A ↔ (XA) = X)
86, 7sylib 188 . 2 ((X A X) → (XA) = X)
91, 8syl5eq 2397 1 ((X A X) → (AX) = X)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  wne 2517  cin 3209   wss 3258  c0 3551  cpw 3723  cuni 3892  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-uni 3893  df-int 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator