| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfrab3ss | GIF version | ||
| Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| dfrab3ss | ⊢ (A ⊆ B → {x ∈ A ∣ φ} = (A ∩ {x ∈ B ∣ φ})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3260 | . . 3 ⊢ (A ⊆ B ↔ (A ∩ B) = A) | |
| 2 | ineq1 3451 | . . . 4 ⊢ ((A ∩ B) = A → ((A ∩ B) ∩ {x ∣ φ}) = (A ∩ {x ∣ φ})) | |
| 3 | 2 | eqcomd 2358 | . . 3 ⊢ ((A ∩ B) = A → (A ∩ {x ∣ φ}) = ((A ∩ B) ∩ {x ∣ φ})) |
| 4 | 1, 3 | sylbi 187 | . 2 ⊢ (A ⊆ B → (A ∩ {x ∣ φ}) = ((A ∩ B) ∩ {x ∣ φ})) |
| 5 | dfrab3 3532 | . 2 ⊢ {x ∈ A ∣ φ} = (A ∩ {x ∣ φ}) | |
| 6 | dfrab3 3532 | . . . 4 ⊢ {x ∈ B ∣ φ} = (B ∩ {x ∣ φ}) | |
| 7 | 6 | ineq2i 3455 | . . 3 ⊢ (A ∩ {x ∈ B ∣ φ}) = (A ∩ (B ∩ {x ∣ φ})) |
| 8 | inass 3466 | . . 3 ⊢ ((A ∩ B) ∩ {x ∣ φ}) = (A ∩ (B ∩ {x ∣ φ})) | |
| 9 | 7, 8 | eqtr4i 2376 | . 2 ⊢ (A ∩ {x ∈ B ∣ φ}) = ((A ∩ B) ∩ {x ∣ φ}) |
| 10 | 4, 5, 9 | 3eqtr4g 2410 | 1 ⊢ (A ⊆ B → {x ∈ A ∣ φ} = (A ∩ {x ∈ B ∣ φ})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 {cab 2339 {crab 2619 ∩ cin 3209 ⊆ wss 3258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |