Step | Hyp | Ref
| Expression |
1 | | 1stfo 5506 |
. . . . . . . . . . 11
⊢ 1st
:V–onto→V |
2 | | fof 5270 |
. . . . . . . . . . 11
⊢ (1st
:V–onto→V → 1st
:V–→V) |
3 | 1, 2 | ax-mp 5 |
. . . . . . . . . 10
⊢ 1st
:V–→V |
4 | | dffn2 5225 |
. . . . . . . . . 10
⊢ (1st Fn
V ↔ 1st :V–→V) |
5 | 3, 4 | mpbir 200 |
. . . . . . . . 9
⊢ 1st Fn
V |
6 | | ssv 3292 |
. . . . . . . . 9
⊢ ran 1st
⊆ V |
7 | | fnco 5192 |
. . . . . . . . 9
⊢ ((1st Fn
V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (1st ∘ 1st ) Fn V) |
8 | 5, 5, 6, 7 | mp3an 1277 |
. . . . . . . 8
⊢ (1st
∘ 1st ) Fn V |
9 | | 2ndfo 5507 |
. . . . . . . . . . . 12
⊢ 2nd
:V–onto→V |
10 | | fofn 5272 |
. . . . . . . . . . . 12
⊢ (2nd
:V–onto→V → 2nd
Fn V) |
11 | 9, 10 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 2nd Fn
V |
12 | | fnco 5192 |
. . . . . . . . . . 11
⊢ ((2nd Fn
V ∧ 1st Fn V ∧ ran 1st ⊆ V) → (2nd ∘ 1st ) Fn V) |
13 | 11, 5, 6, 12 | mp3an 1277 |
. . . . . . . . . 10
⊢ (2nd
∘ 1st ) Fn V |
14 | | fntxp 5805 |
. . . . . . . . . 10
⊢ (((2nd
∘ 1st ) Fn V ∧ 2nd Fn V) → ((2nd ∘ 1st ) ⊗ 2nd ) Fn (V
∩ V)) |
15 | 13, 11, 14 | mp2an 653 |
. . . . . . . . 9
⊢ ((2nd
∘ 1st ) ⊗ 2nd )
Fn (V ∩ V) |
16 | | inidm 3465 |
. . . . . . . . . 10
⊢ (V ∩ V) =
V |
17 | 16 | fneq2i 5180 |
. . . . . . . . 9
⊢ (((2nd
∘ 1st ) ⊗ 2nd )
Fn (V ∩ V) ↔ ((2nd ∘
1st ) ⊗ 2nd ) Fn V) |
18 | 15, 17 | mpbi 199 |
. . . . . . . 8
⊢ ((2nd
∘ 1st ) ⊗ 2nd )
Fn V |
19 | | fntxp 5805 |
. . . . . . . 8
⊢ (((1st
∘ 1st ) Fn V ∧ ((2nd ∘ 1st ) ⊗ 2nd ) Fn V)
→ ((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) Fn (V ∩ V)) |
20 | 8, 18, 19 | mp2an 653 |
. . . . . . 7
⊢ ((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) Fn (V ∩ V) |
21 | 16 | fneq2i 5180 |
. . . . . . 7
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) Fn (V ∩ V) ↔ ((1st ∘
1st ) ⊗ ((2nd ∘
1st ) ⊗ 2nd )) Fn V) |
22 | 20, 21 | mpbi 199 |
. . . . . 6
⊢ ((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) Fn V |
23 | | dffn2 5225 |
. . . . . 6
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) Fn V ↔ ((1st ∘
1st ) ⊗ ((2nd ∘
1st ) ⊗ 2nd )):V–→V) |
24 | 22, 23 | mpbi 199 |
. . . . 5
⊢ ((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)):V–→V |
25 | | xpassenlem 6057 |
. . . . . . . . 9
⊢ (y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ↔ ( Proj1
Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x)) |
26 | | xpassenlem 6057 |
. . . . . . . . 9
⊢ (z((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ↔ ( Proj1
Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) |
27 | | simp1 955 |
. . . . . . . . . . . . . 14
⊢ (( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) →
Proj1 Proj1
y = Proj1
x) |
28 | | simp1 955 |
. . . . . . . . . . . . . 14
⊢ (( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x) →
Proj1 Proj1
z = Proj1
x) |
29 | | eqtr3 2372 |
. . . . . . . . . . . . . 14
⊢ (( Proj1 Proj1 y = Proj1 x ∧ Proj1 Proj1 z = Proj1 x) → Proj1 Proj1 y = Proj1 Proj1 z) |
30 | 27, 28, 29 | syl2an 463 |
. . . . . . . . . . . . 13
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → Proj1 Proj1 y = Proj1 Proj1 z) |
31 | | simp2 956 |
. . . . . . . . . . . . . 14
⊢ (( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) →
Proj2 Proj1
y = Proj1
Proj2 x) |
32 | | simp2 956 |
. . . . . . . . . . . . . 14
⊢ (( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x) →
Proj2 Proj1
z = Proj1
Proj2 x) |
33 | | eqtr3 2372 |
. . . . . . . . . . . . . 14
⊢ (( Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 Proj1 z = Proj1 Proj2 x) → Proj2 Proj1 y = Proj2 Proj1 z) |
34 | 31, 32, 33 | syl2an 463 |
. . . . . . . . . . . . 13
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → Proj2 Proj1 y = Proj2 Proj1 z) |
35 | 30, 34 | opeq12d 4587 |
. . . . . . . . . . . 12
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → 〈 Proj1 Proj1 y, Proj2 Proj1 y〉 = 〈 Proj1 Proj1 z, Proj2 Proj1 z〉) |
36 | | opeq 4620 |
. . . . . . . . . . . 12
⊢ Proj1 y = 〈 Proj1 Proj1 y, Proj2 Proj1 y〉 |
37 | | opeq 4620 |
. . . . . . . . . . . 12
⊢ Proj1 z = 〈 Proj1 Proj1 z, Proj2 Proj1 z〉 |
38 | 35, 36, 37 | 3eqtr4g 2410 |
. . . . . . . . . . 11
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → Proj1
y = Proj1
z) |
39 | | simp3 957 |
. . . . . . . . . . . 12
⊢ (( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) →
Proj2 y =
Proj2 Proj2
x) |
40 | | simp3 957 |
. . . . . . . . . . . 12
⊢ (( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x) →
Proj2 z =
Proj2 Proj2
x) |
41 | | eqtr3 2372 |
. . . . . . . . . . . 12
⊢ (( Proj2 y = Proj2 Proj2 x ∧ Proj2 z = Proj2 Proj2 x) → Proj2
y = Proj2
z) |
42 | 39, 40, 41 | syl2an 463 |
. . . . . . . . . . 11
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → Proj2
y = Proj2
z) |
43 | 38, 42 | opeq12d 4587 |
. . . . . . . . . 10
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → 〈 Proj1 y, Proj2 y〉 = 〈 Proj1 z, Proj2 z〉) |
44 | | opeq 4620 |
. . . . . . . . . 10
⊢ y = 〈 Proj1 y, Proj2 y〉 |
45 | | opeq 4620 |
. . . . . . . . . 10
⊢ z = 〈 Proj1 z, Proj2 z〉 |
46 | 43, 44, 45 | 3eqtr4g 2410 |
. . . . . . . . 9
⊢ ((( Proj1 Proj1 y = Proj1 x ∧ Proj2 Proj1 y = Proj1 Proj2 x ∧ Proj2 y = Proj2 Proj2 x) ∧ ( Proj1 Proj1 z = Proj1 x ∧ Proj2 Proj1 z = Proj1 Proj2 x ∧ Proj2 z = Proj2 Proj2 x)) → y =
z) |
47 | 25, 26, 46 | syl2anb 465 |
. . . . . . . 8
⊢ ((y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ∧
z((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x) → y = z) |
48 | 47 | gen2 1547 |
. . . . . . 7
⊢ ∀y∀z((y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ∧
z((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x) → y = z) |
49 | | breq1 4643 |
. . . . . . . 8
⊢ (y = z →
(y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ↔ z((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x)) |
50 | 49 | mo4 2237 |
. . . . . . 7
⊢ (∃*y y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ↔ ∀y∀z((y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x ∧
z((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x) → y = z)) |
51 | 48, 50 | mpbir 200 |
. . . . . 6
⊢ ∃*y y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x |
52 | 51 | ax-gen 1546 |
. . . . 5
⊢ ∀x∃*y y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x |
53 | | dff12 5258 |
. . . . 5
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)):V–1-1→V ↔
(((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )):V–→V ∧
∀x∃*y y((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd
))x)) |
54 | 24, 52, 53 | mpbir2an 886 |
. . . 4
⊢ ((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)):V–1-1→V |
55 | | ssv 3292 |
. . . 4
⊢ ((A × B)
× C) ⊆ V |
56 | | f1ores 5301 |
. . . 4
⊢ ((((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)):V–1-1→V ∧ ((A ×
B) × C) ⊆ V) →
(((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) ↾ ((A × B)
× C)):((A × B)
× C)–1-1-onto→(((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))) |
57 | 54, 55, 56 | mp2an 653 |
. . 3
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) ↾ ((A
× B) × C)):((A ×
B) × C)–1-1-onto→(((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C)) |
58 | | vex 2863 |
. . . . . 6
⊢ p ∈
V |
59 | | opeqex 4622 |
. . . . . 6
⊢ (p ∈ V → ∃b∃c p = 〈b, c〉) |
60 | | rexcom4 2879 |
. . . . . . . . . . . 12
⊢ (∃x ∈ A ∃p∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃p∃x ∈ A ∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
61 | | rexcom4 2879 |
. . . . . . . . . . . . . 14
⊢ (∃y ∈ B ∃p∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃p∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
62 | | rexcom4 2879 |
. . . . . . . . . . . . . . . 16
⊢ (∃z ∈ C ∃p(p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃p∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
63 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ x ∈
V |
64 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ y ∈
V |
65 | 63, 64 | opex 4589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈x, y〉 ∈ V |
66 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ z ∈
V |
67 | 65, 66 | opex 4589 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈〈x, y〉, z〉 ∈
V |
68 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . 19
⊢ (p = 〈〈x, y〉, z〉 →
(p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉 ↔ 〈〈x, y〉, z〉((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
))〈a,
〈b,
c〉〉)) |
69 | 67, 68 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃p(p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ 〈〈x, y〉, z〉((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
))〈a,
〈b,
c〉〉) |
70 | 65, 66 | brco1st 5778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈〈x, y〉, z〉(1st ∘ 1st )a ↔ 〈x, y〉1st a) |
71 | 63, 64 | opbr1st 5502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈x, y〉1st
a ↔ x = a) |
72 | 70, 71 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈〈x, y〉, z〉(1st ∘ 1st )a ↔ x =
a) |
73 | | trtxp 5782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈〈x, y〉, z〉((2nd ∘ 1st ) ⊗ 2nd )〈b, c〉 ↔ (〈〈x, y〉, z〉(2nd ∘ 1st )b ∧ 〈〈x, y〉, z〉2nd c)) |
74 | | brco 4884 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈〈x, y〉, z〉(2nd ∘ 1st )b ↔ ∃t(〈〈x, y〉, z〉1st t ∧ t2nd b)) |
75 | 65, 66 | opbr1st 5502 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈〈x, y〉, z〉1st t ↔ 〈x, y〉 = t) |
76 | | eqcom 2355 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈x, y〉 = t ↔ t =
〈x,
y〉) |
77 | 75, 76 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈〈x, y〉, z〉1st t ↔ t =
〈x,
y〉) |
78 | 77 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((〈〈x, y〉, z〉1st t ∧ t2nd b) ↔ (t =
〈x,
y〉 ∧ t2nd b)) |
79 | 78 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃t(〈〈x, y〉, z〉1st t ∧ t2nd b) ↔ ∃t(t = 〈x, y〉 ∧ t2nd b)) |
80 | | breq1 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (t = 〈x, y〉 → (t2nd b ↔ 〈x, y〉2nd b)) |
81 | 65, 80 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃t(t = 〈x, y〉 ∧ t2nd b) ↔ 〈x, y〉2nd
b) |
82 | 63, 64 | opbr2nd 5503 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈x, y〉2nd
b ↔ y = b) |
83 | 81, 82 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∃t(t = 〈x, y〉 ∧ t2nd b) ↔ y =
b) |
84 | 74, 79, 83 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈〈x, y〉, z〉(2nd ∘ 1st )b ↔ y =
b) |
85 | 65, 66 | opbr2nd 5503 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈〈x, y〉, z〉2nd c ↔ z =
c) |
86 | 84, 85 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((〈〈x, y〉, z〉(2nd ∘ 1st )b ∧ 〈〈x, y〉, z〉2nd c) ↔ (y =
b ∧
z = c)) |
87 | 73, 86 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈〈x, y〉, z〉((2nd ∘ 1st ) ⊗ 2nd )〈b, c〉 ↔
(y = b
∧ z =
c)) |
88 | 72, 87 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((〈〈x, y〉, z〉(1st ∘ 1st )a ∧ 〈〈x, y〉, z〉((2nd ∘ 1st ) ⊗ 2nd )〈b, c〉) ↔
(x = a
∧ (y =
b ∧
z = c))) |
89 | | trtxp 5782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈〈x, y〉, z〉((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉 ↔ (〈〈x, y〉, z〉(1st
∘ 1st )a ∧ 〈〈x, y〉, z〉((2nd ∘ 1st ) ⊗ 2nd )〈b, c〉)) |
90 | | 3anass 938 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((x = a ∧ y = b ∧ z = c) ↔
(x = a
∧ (y =
b ∧
z = c))) |
91 | 88, 89, 90 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈〈x, y〉, z〉((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉 ↔ (x =
a ∧
y = b
∧ z =
c)) |
92 | 69, 91 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (∃p(p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (x =
a ∧
y = b
∧ z =
c)) |
93 | 92 | rexbii 2640 |
. . . . . . . . . . . . . . . 16
⊢ (∃z ∈ C ∃p(p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃z ∈ C (x = a ∧ y = b ∧ z = c)) |
94 | 62, 93 | bitr3i 242 |
. . . . . . . . . . . . . . 15
⊢ (∃p∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃z ∈ C (x = a ∧ y = b ∧ z = c)) |
95 | 94 | rexbii 2640 |
. . . . . . . . . . . . . 14
⊢ (∃y ∈ B ∃p∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃y ∈ B ∃z ∈ C (x = a ∧ y = b ∧ z = c)) |
96 | 61, 95 | bitr3i 242 |
. . . . . . . . . . . . 13
⊢ (∃p∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃y ∈ B ∃z ∈ C (x = a ∧ y = b ∧ z = c)) |
97 | 96 | rexbii 2640 |
. . . . . . . . . . . 12
⊢ (∃x ∈ A ∃p∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃x ∈ A ∃y ∈ B ∃z ∈ C (x = a ∧ y = b ∧ z = c)) |
98 | 60, 97 | bitr3i 242 |
. . . . . . . . . . 11
⊢ (∃p∃x ∈ A ∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃x ∈ A ∃y ∈ B ∃z ∈ C (x = a ∧ y = b ∧ z = c)) |
99 | | 3reeanv 2780 |
. . . . . . . . . . 11
⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C (x = a ∧ y = b ∧ z = c) ↔
(∃x
∈ A
x = a
∧ ∃y ∈ B y = b ∧ ∃z ∈ C z = c)) |
100 | 98, 99 | bitri 240 |
. . . . . . . . . 10
⊢ (∃p∃x ∈ A ∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (∃x ∈ A x = a ∧ ∃y ∈ B y = b ∧ ∃z ∈ C z = c)) |
101 | | r19.41v 2765 |
. . . . . . . . . . . 12
⊢ (∃x ∈ A (∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (∃x ∈ A ∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
102 | | r19.41v 2765 |
. . . . . . . . . . . . . . 15
⊢ (∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
103 | 102 | rexbii 2640 |
. . . . . . . . . . . . . 14
⊢ (∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃y ∈ B (∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
104 | | r19.41v 2765 |
. . . . . . . . . . . . . 14
⊢ (∃y ∈ B (∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
105 | 103, 104 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
106 | 105 | rexbii 2640 |
. . . . . . . . . . . 12
⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃x ∈ A (∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
107 | | elxp2 4803 |
. . . . . . . . . . . . . 14
⊢ (p ∈ ((A × B)
× C) ↔ ∃t ∈ (A ×
B)∃z ∈ C p = 〈t, z〉) |
108 | | df-rex 2621 |
. . . . . . . . . . . . . 14
⊢ (∃t ∈ (A ×
B)∃z ∈ C p = 〈t, z〉 ↔ ∃t(t ∈ (A × B)
∧ ∃z ∈ C p = 〈t, z〉)) |
109 | | rexcom4 2879 |
. . . . . . . . . . . . . . 15
⊢ (∃x ∈ A ∃t∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ ∃t∃x ∈ A ∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
110 | | opeq1 4579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = 〈x, y〉 → 〈t, z〉 = 〈〈x, y〉, z〉) |
111 | 110 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = 〈x, y〉 → (p =
〈t,
z〉 ↔
p = 〈〈x, y〉, z〉)) |
112 | 65, 111 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃t(t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ p =
〈〈x, y〉, z〉) |
113 | 112 | rexbii 2640 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃z ∈ C ∃t(t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ ∃z ∈ C p = 〈〈x, y〉, z〉) |
114 | | rexcom4 2879 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃z ∈ C ∃t(t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ ∃t∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
115 | 113, 114 | bitr3i 242 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃z ∈ C p = 〈〈x, y〉, z〉 ↔ ∃t∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
116 | 115 | rexbii 2640 |
. . . . . . . . . . . . . . . . 17
⊢ (∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ↔ ∃y ∈ B ∃t∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
117 | | rexcom4 2879 |
. . . . . . . . . . . . . . . . 17
⊢ (∃y ∈ B ∃t∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ ∃t∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
118 | 116, 117 | bitri 240 |
. . . . . . . . . . . . . . . 16
⊢ (∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ↔ ∃t∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
119 | 118 | rexbii 2640 |
. . . . . . . . . . . . . . 15
⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ↔ ∃x ∈ A ∃t∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
120 | | r19.41v 2765 |
. . . . . . . . . . . . . . . . 17
⊢ (∃x ∈ A (∃y ∈ B t = 〈x, y〉 ∧ ∃z ∈ C p = 〈t, z〉) ↔ (∃x ∈ A ∃y ∈ B t = 〈x, y〉 ∧ ∃z ∈ C p = 〈t, z〉)) |
121 | | reeanv 2779 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ (∃y ∈ B t = 〈x, y〉 ∧ ∃z ∈ C p = 〈t, z〉)) |
122 | 121 | rexbii 2640 |
. . . . . . . . . . . . . . . . 17
⊢ (∃x ∈ A ∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉) ↔ ∃x ∈ A (∃y ∈ B t = 〈x, y〉 ∧ ∃z ∈ C p = 〈t, z〉)) |
123 | | elxp2 4803 |
. . . . . . . . . . . . . . . . . 18
⊢ (t ∈ (A × B)
↔ ∃x ∈ A ∃y ∈ B t = 〈x, y〉) |
124 | 123 | anbi1i 676 |
. . . . . . . . . . . . . . . . 17
⊢ ((t ∈ (A × B)
∧ ∃z ∈ C p = 〈t, z〉) ↔ (∃x ∈ A ∃y ∈ B t = 〈x, y〉 ∧ ∃z ∈ C p = 〈t, z〉)) |
125 | 120, 122,
124 | 3bitr4ri 269 |
. . . . . . . . . . . . . . . 16
⊢ ((t ∈ (A × B)
∧ ∃z ∈ C p = 〈t, z〉) ↔ ∃x ∈ A ∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
126 | 125 | exbii 1582 |
. . . . . . . . . . . . . . 15
⊢ (∃t(t ∈ (A × B)
∧ ∃z ∈ C p = 〈t, z〉) ↔ ∃t∃x ∈ A ∃y ∈ B ∃z ∈ C (t = 〈x, y〉 ∧ p = 〈t, z〉)) |
127 | 109, 119,
126 | 3bitr4ri 269 |
. . . . . . . . . . . . . 14
⊢ (∃t(t ∈ (A × B)
∧ ∃z ∈ C p = 〈t, z〉) ↔ ∃x ∈ A ∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉) |
128 | 107, 108,
127 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (p ∈ ((A × B)
× C) ↔ ∃x ∈ A ∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉) |
129 | 128 | anbi1i 676 |
. . . . . . . . . . . 12
⊢ ((p ∈ ((A × B)
× C) ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (∃x ∈ A ∃y ∈ B ∃z ∈ C p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
130 | 101, 106,
129 | 3bitr4ri 269 |
. . . . . . . . . . 11
⊢ ((p ∈ ((A × B)
× C) ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃x ∈ A ∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
131 | 130 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃p(p ∈ ((A × B)
× C) ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ ∃p∃x ∈ A ∃y ∈ B ∃z ∈ C (p = 〈〈x, y〉, z〉 ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
132 | | risset 2662 |
. . . . . . . . . . 11
⊢ (a ∈ A ↔ ∃x ∈ A x = a) |
133 | | risset 2662 |
. . . . . . . . . . 11
⊢ (b ∈ B ↔ ∃y ∈ B y = b) |
134 | | risset 2662 |
. . . . . . . . . . 11
⊢ (c ∈ C ↔ ∃z ∈ C z = c) |
135 | 132, 133,
134 | 3anbi123i 1140 |
. . . . . . . . . 10
⊢ ((a ∈ A ∧ b ∈ B ∧ c ∈ C) ↔ (∃x ∈ A x = a ∧ ∃y ∈ B y = b ∧ ∃z ∈ C z = c)) |
136 | 100, 131,
135 | 3bitr4i 268 |
. . . . . . . . 9
⊢ (∃p(p ∈ ((A × B)
× C) ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉) ↔ (a
∈ A ∧ b ∈ B ∧ c ∈ C)) |
137 | | elima2 4756 |
. . . . . . . . 9
⊢ (〈a, 〈b, c〉〉 ∈
(((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) “ ((A
× B) × C)) ↔ ∃p(p ∈ ((A × B)
× C) ∧ p((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))〈a, 〈b, c〉〉)) |
138 | | opelxp 4812 |
. . . . . . . . . . 11
⊢ (〈b, c〉 ∈ (B ×
C) ↔ (b ∈ B ∧ c ∈ C)) |
139 | 138 | anbi2i 675 |
. . . . . . . . . 10
⊢ ((a ∈ A ∧ 〈b, c〉 ∈ (B ×
C)) ↔ (a ∈ A ∧ (b ∈ B ∧ c ∈ C))) |
140 | | opelxp 4812 |
. . . . . . . . . 10
⊢ (〈a, 〈b, c〉〉 ∈ (A × (B
× C)) ↔ (a ∈ A ∧ 〈b, c〉 ∈ (B ×
C))) |
141 | | 3anass 938 |
. . . . . . . . . 10
⊢ ((a ∈ A ∧ b ∈ B ∧ c ∈ C) ↔ (a
∈ A ∧ (b ∈ B ∧ c ∈ C))) |
142 | 139, 140,
141 | 3bitr4i 268 |
. . . . . . . . 9
⊢ (〈a, 〈b, c〉〉 ∈ (A × (B
× C)) ↔ (a ∈ A ∧ b ∈ B ∧ c ∈ C)) |
143 | 136, 137,
142 | 3bitr4i 268 |
. . . . . . . 8
⊢ (〈a, 〈b, c〉〉 ∈
(((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) “ ((A
× B) × C)) ↔ 〈a, 〈b, c〉〉 ∈ (A × (B
× C))) |
144 | | opeq2 4580 |
. . . . . . . . . 10
⊢ (p = 〈b, c〉 → 〈a, p〉 = 〈a, 〈b, c〉〉) |
145 | 144 | eleq1d 2419 |
. . . . . . . . 9
⊢ (p = 〈b, c〉 → (〈a, p〉 ∈ (((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ 〈a, 〈b, c〉〉 ∈ (((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C)))) |
146 | 144 | eleq1d 2419 |
. . . . . . . . 9
⊢ (p = 〈b, c〉 → (〈a, p〉 ∈ (A ×
(B × C)) ↔ 〈a, 〈b, c〉〉 ∈ (A × (B
× C)))) |
147 | 145, 146 | bibi12d 312 |
. . . . . . . 8
⊢ (p = 〈b, c〉 → ((〈a, p〉 ∈ (((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ 〈a, p〉 ∈ (A × (B
× C))) ↔ (〈a, 〈b, c〉〉 ∈
(((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) “ ((A
× B) × C)) ↔ 〈a, 〈b, c〉〉 ∈ (A × (B
× C))))) |
148 | 143, 147 | mpbiri 224 |
. . . . . . 7
⊢ (p = 〈b, c〉 → (〈a, p〉 ∈ (((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ 〈a, p〉 ∈ (A × (B
× C)))) |
149 | 148 | exlimivv 1635 |
. . . . . 6
⊢ (∃b∃c p = 〈b, c〉 → (〈a, p〉 ∈ (((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ 〈a, p〉 ∈ (A × (B
× C)))) |
150 | 58, 59, 149 | mp2b 9 |
. . . . 5
⊢ (〈a, p〉 ∈ (((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ 〈a, p〉 ∈ (A × (B
× C))) |
151 | 150 | eqrelriv 4851 |
. . . 4
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) “ ((A × B) × C)) =
(A × (B × C)) |
152 | | f1oeq3 5284 |
. . . 4
⊢ ((((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) “ ((A × B) × C)) =
(A × (B × C))
→ ((((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) ↾ ((A × B)
× C)):((A × B)
× C)–1-1-onto→(((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ (((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) ↾ ((A × B)
× C)):((A × B)
× C)–1-1-onto→(A ×
(B × C)))) |
153 | 151, 152 | ax-mp 5 |
. . 3
⊢ ((((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) ↾ ((A
× B) × C)):((A ×
B) × C)–1-1-onto→(((1st ∘ 1st ) ⊗ ((2nd ∘ 1st ) ⊗ 2nd ))
“ ((A × B) × C))
↔ (((1st ∘ 1st )
⊗ ((2nd ∘ 1st )
⊗ 2nd )) ↾ ((A × B)
× C)):((A × B)
× C)–1-1-onto→(A ×
(B × C))) |
154 | 57, 153 | mpbi 199 |
. 2
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) ↾ ((A
× B) × C)):((A ×
B) × C)–1-1-onto→(A ×
(B × C)) |
155 | | 1stex 4740 |
. . . . . 6
⊢ 1st
∈ V |
156 | 155, 155 | coex 4751 |
. . . . 5
⊢ (1st
∘ 1st ) ∈ V |
157 | | 2ndex 5113 |
. . . . . . 7
⊢ 2nd
∈ V |
158 | 157, 155 | coex 4751 |
. . . . . 6
⊢ (2nd
∘ 1st ) ∈ V |
159 | 158, 157 | txpex 5786 |
. . . . 5
⊢ ((2nd
∘ 1st ) ⊗ 2nd )
∈ V |
160 | 156, 159 | txpex 5786 |
. . . 4
⊢ ((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) ∈ V |
161 | | xpassen.1 |
. . . . . 6
⊢ A ∈
V |
162 | | xpassen.2 |
. . . . . 6
⊢ B ∈
V |
163 | 161, 162 | xpex 5116 |
. . . . 5
⊢ (A × B)
∈ V |
164 | | xpassen.3 |
. . . . 5
⊢ C ∈
V |
165 | 163, 164 | xpex 5116 |
. . . 4
⊢ ((A × B)
× C) ∈ V |
166 | 160, 165 | resex 5118 |
. . 3
⊢ (((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) ↾ ((A
× B) × C)) ∈
V |
167 | 166 | f1oen 6034 |
. 2
⊢ ((((1st
∘ 1st ) ⊗ ((2nd
∘ 1st ) ⊗ 2nd
)) ↾ ((A
× B) × C)):((A ×
B) × C)–1-1-onto→(A ×
(B × C)) → ((A
× B) × C) ≈ (A
× (B × C))) |
168 | 154, 167 | ax-mp 5 |
1
⊢ ((A × B)
× C) ≈ (A × (B
× C)) |