New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfif2 | GIF version |
Description: An alternate definition of the conditional operator df-if 3664 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
dfif2 | ⊢ if(φ, A, B) = {x ∣ ((x ∈ B → φ) → (x ∈ A ∧ φ))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3664 | . 2 ⊢ if(φ, A, B) = {x ∣ ((x ∈ A ∧ φ) ∨ (x ∈ B ∧ ¬ φ))} | |
2 | df-or 359 | . . . 4 ⊢ (((x ∈ B ∧ ¬ φ) ∨ (x ∈ A ∧ φ)) ↔ (¬ (x ∈ B ∧ ¬ φ) → (x ∈ A ∧ φ))) | |
3 | orcom 376 | . . . 4 ⊢ (((x ∈ A ∧ φ) ∨ (x ∈ B ∧ ¬ φ)) ↔ ((x ∈ B ∧ ¬ φ) ∨ (x ∈ A ∧ φ))) | |
4 | iman 413 | . . . . 5 ⊢ ((x ∈ B → φ) ↔ ¬ (x ∈ B ∧ ¬ φ)) | |
5 | 4 | imbi1i 315 | . . . 4 ⊢ (((x ∈ B → φ) → (x ∈ A ∧ φ)) ↔ (¬ (x ∈ B ∧ ¬ φ) → (x ∈ A ∧ φ))) |
6 | 2, 3, 5 | 3bitr4i 268 | . . 3 ⊢ (((x ∈ A ∧ φ) ∨ (x ∈ B ∧ ¬ φ)) ↔ ((x ∈ B → φ) → (x ∈ A ∧ φ))) |
7 | 6 | abbii 2466 | . 2 ⊢ {x ∣ ((x ∈ A ∧ φ) ∨ (x ∈ B ∧ ¬ φ))} = {x ∣ ((x ∈ B → φ) → (x ∈ A ∧ φ))} |
8 | 1, 7 | eqtri 2373 | 1 ⊢ if(φ, A, B) = {x ∣ ((x ∈ B → φ) → (x ∈ A ∧ φ))} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-if 3664 |
This theorem is referenced by: iftrue 3669 nfifd 3686 |
Copyright terms: Public domain | W3C validator |