New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfif6 | GIF version |
Description: An alternate definition of the conditional operator df-if 3664 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif6 | ⊢ if(φ, A, B) = ({x ∈ A ∣ φ} ∪ {x ∈ B ∣ ¬ φ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unab 3522 | . 2 ⊢ ({x ∣ (x ∈ A ∧ φ)} ∪ {x ∣ (x ∈ B ∧ ¬ φ)}) = {x ∣ ((x ∈ A ∧ φ) ∨ (x ∈ B ∧ ¬ φ))} | |
2 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
3 | df-rab 2624 | . . 3 ⊢ {x ∈ B ∣ ¬ φ} = {x ∣ (x ∈ B ∧ ¬ φ)} | |
4 | 2, 3 | uneq12i 3417 | . 2 ⊢ ({x ∈ A ∣ φ} ∪ {x ∈ B ∣ ¬ φ}) = ({x ∣ (x ∈ A ∧ φ)} ∪ {x ∣ (x ∈ B ∧ ¬ φ)}) |
5 | df-if 3664 | . 2 ⊢ if(φ, A, B) = {x ∣ ((x ∈ A ∧ φ) ∨ (x ∈ B ∧ ¬ φ))} | |
6 | 1, 4, 5 | 3eqtr4ri 2384 | 1 ⊢ if(φ, A, B) = ({x ∈ A ∣ φ} ∪ {x ∈ B ∣ ¬ φ}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 ∪ cun 3208 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-if 3664 |
This theorem is referenced by: ifeq1 3667 ifeq2 3668 dfif3 3673 |
Copyright terms: Public domain | W3C validator |