NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  compleqi GIF version

Theorem compleqi 3245
Description: Equality inference for complement. (Contributed by SF, 11-Jan-2015.)
Hypothesis
Ref Expression
compleqi.1 A = B
Assertion
Ref Expression
compleqi A = ∼ B

Proof of Theorem compleqi
StepHypRef Expression
1 compleqi.1 . 2 A = B
2 compleq 3244 . 2 (A = B → ∼ A = ∼ B)
31, 2ax-mp 5 1 A = ∼ B
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  ccompl 3206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213
This theorem is referenced by:  dfin5  3546  dfun4  3547  iunin  3548  iinun  3549  compl0  4072  incompl  4074  nnadjoin  4521  nnadjoinpw  4522  nulnnn  4557  sbthlem1  6204
  Copyright terms: Public domain W3C validator