Step | Hyp | Ref
| Expression |
1 | | elncs 6120 |
. . . . . 6
⊢ (A ∈ NC ↔ ∃x A = Nc x) |
2 | | elncs 6120 |
. . . . . 6
⊢ (B ∈ NC ↔ ∃y B = Nc y) |
3 | | elncs 6120 |
. . . . . 6
⊢ (X ∈ NC ↔ ∃z X = Nc z) |
4 | 1, 2, 3 | 3anbi123i 1140 |
. . . . 5
⊢ ((A ∈ NC ∧ B ∈ NC ∧ X ∈ NC ) ↔ (∃x A = Nc x ∧ ∃y B = Nc y ∧ ∃z X = Nc z)) |
5 | | eeeanv 1914 |
. . . . 5
⊢ (∃x∃y∃z(A = Nc x ∧ B = Nc y ∧ X = Nc z) ↔ (∃x A = Nc x ∧ ∃y B = Nc y ∧ ∃z X = Nc z)) |
6 | 4, 5 | bitr4i 243 |
. . . 4
⊢ ((A ∈ NC ∧ B ∈ NC ∧ X ∈ NC ) ↔ ∃x∃y∃z(A = Nc x ∧ B = Nc y ∧ X = Nc z)) |
7 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
8 | 7 | tcnc 6226 |
. . . . . . . . . 10
⊢ Tc Nc x = Nc ℘1x |
9 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
10 | 9 | tcnc 6226 |
. . . . . . . . . . 11
⊢ Tc Nc y = Nc ℘1y |
11 | 10 | addceq1i 4387 |
. . . . . . . . . 10
⊢ ( Tc Nc y +c Nc z) = ( Nc ℘1y +c Nc z) |
12 | 8, 11 | eqeq12i 2366 |
. . . . . . . . 9
⊢ ( Tc Nc x = ( Tc
Nc y
+c Nc z) ↔ Nc ℘1x = ( Nc ℘1y +c Nc z)) |
13 | | eqcom 2355 |
. . . . . . . . 9
⊢ ( Nc ℘1x = ( Nc ℘1y +c Nc z) ↔ ( Nc ℘1y +c Nc z) = Nc ℘1x) |
14 | 9 | pw1ex 4304 |
. . . . . . . . . . . 12
⊢ ℘1y ∈
V |
15 | 14 | ncelncsi 6122 |
. . . . . . . . . . 11
⊢ Nc ℘1y ∈ NC |
16 | | vex 2863 |
. . . . . . . . . . . 12
⊢ z ∈
V |
17 | 16 | ncelncsi 6122 |
. . . . . . . . . . 11
⊢ Nc z ∈ NC |
18 | | ncaddccl 6145 |
. . . . . . . . . . 11
⊢ (( Nc ℘1y ∈ NC ∧ Nc z ∈ NC ) → ( Nc ℘1y +c Nc z) ∈ NC
) |
19 | 15, 17, 18 | mp2an 653 |
. . . . . . . . . 10
⊢ ( Nc ℘1y +c Nc z) ∈ NC |
20 | | ncseqnc 6129 |
. . . . . . . . . 10
⊢ (( Nc ℘1y +c Nc z) ∈ NC → (( Nc ℘1y +c Nc z) = Nc ℘1x ↔ ℘1x ∈ ( Nc ℘1y +c Nc z))) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . 9
⊢ (( Nc ℘1y +c Nc z) = Nc ℘1x ↔ ℘1x ∈ ( Nc ℘1y +c Nc z)) |
22 | 12, 13, 21 | 3bitri 262 |
. . . . . . . 8
⊢ ( Tc Nc x = ( Tc
Nc y
+c Nc z) ↔ ℘1x ∈ ( Nc ℘1y +c Nc z)) |
23 | | eladdc 4399 |
. . . . . . . . 9
⊢ (℘1x ∈ ( Nc ℘1y +c Nc z) ↔ ∃a ∈ Nc ℘1y∃b ∈ Nc z((a ∩ b) =
∅ ∧ ℘1x = (a ∪
b))) |
24 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ a ∈
V |
25 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ b ∈
V |
26 | 24, 25 | pw1equn 4332 |
. . . . . . . . . . . . 13
⊢ (℘1x = (a ∪
b) ↔ ∃c∃w(x = (c ∪
w) ∧
a = ℘1c ∧ b = ℘1w)) |
27 | | simp3 957 |
. . . . . . . . . . . . . . . 16
⊢ ((x = (c ∪
w) ∧
a = ℘1c ∧ b = ℘1w) → b =
℘1w) |
28 | | elnc 6126 |
. . . . . . . . . . . . . . . . 17
⊢ (b ∈ Nc z ↔ b ≈ z) |
29 | | ensym 6038 |
. . . . . . . . . . . . . . . . . 18
⊢ (b ≈ z
↔ z ≈ b) |
30 | | breq2 4644 |
. . . . . . . . . . . . . . . . . . 19
⊢ (b = ℘1w → (z
≈ b ↔ z ≈ ℘1w)) |
31 | 30 | biimpcd 215 |
. . . . . . . . . . . . . . . . . 18
⊢ (z ≈ b
→ (b = ℘1w → z
≈ ℘1w)) |
32 | 29, 31 | sylbi 187 |
. . . . . . . . . . . . . . . . 17
⊢ (b ≈ z
→ (b = ℘1w → z
≈ ℘1w)) |
33 | 28, 32 | sylbi 187 |
. . . . . . . . . . . . . . . 16
⊢ (b ∈ Nc z →
(b = ℘1w → z
≈ ℘1w)) |
34 | 27, 33 | syl5 28 |
. . . . . . . . . . . . . . 15
⊢ (b ∈ Nc z →
((x = (c ∪ w) ∧ a = ℘1c ∧ b = ℘1w) → z
≈ ℘1w)) |
35 | 34 | eximdv 1622 |
. . . . . . . . . . . . . 14
⊢ (b ∈ Nc z → (∃w(x = (c ∪
w) ∧
a = ℘1c ∧ b = ℘1w) → ∃w z ≈ ℘1w)) |
36 | 35 | exlimdv 1636 |
. . . . . . . . . . . . 13
⊢ (b ∈ Nc z → (∃c∃w(x = (c ∪
w) ∧
a = ℘1c ∧ b = ℘1w) → ∃w z ≈ ℘1w)) |
37 | 26, 36 | syl5bi 208 |
. . . . . . . . . . . 12
⊢ (b ∈ Nc z → (℘1x = (a ∪
b) → ∃w z ≈ ℘1w)) |
38 | 37 | adantld 453 |
. . . . . . . . . . 11
⊢ (b ∈ Nc z →
(((a ∩ b) = ∅ ∧ ℘1x = (a ∪
b)) → ∃w z ≈ ℘1w)) |
39 | 38 | rexlimiv 2733 |
. . . . . . . . . 10
⊢ (∃b ∈ Nc z((a ∩
b) = ∅
∧ ℘1x = (a ∪
b)) → ∃w z ≈ ℘1w) |
40 | 39 | rexlimivw 2735 |
. . . . . . . . 9
⊢ (∃a ∈ Nc ℘1y∃b ∈ Nc z((a ∩ b) =
∅ ∧ ℘1x = (a ∪
b)) → ∃w z ≈ ℘1w) |
41 | 23, 40 | sylbi 187 |
. . . . . . . 8
⊢ (℘1x ∈ ( Nc ℘1y +c Nc z) → ∃w z ≈ ℘1w) |
42 | 22, 41 | sylbi 187 |
. . . . . . 7
⊢ ( Tc Nc x = ( Tc
Nc y
+c Nc z) → ∃w z ≈ ℘1w) |
43 | | tceq 6159 |
. . . . . . . . . 10
⊢ (A = Nc x → Tc
A = Tc Nc x) |
44 | 43 | 3ad2ant1 976 |
. . . . . . . . 9
⊢ ((A = Nc x ∧ B = Nc y ∧ X = Nc z) → Tc
A = Tc Nc x) |
45 | | tceq 6159 |
. . . . . . . . . . . 12
⊢ (B = Nc y → Tc
B = Tc Nc y) |
46 | 45 | adantr 451 |
. . . . . . . . . . 11
⊢ ((B = Nc y ∧ X = Nc z) → Tc
B = Tc Nc y) |
47 | | simpr 447 |
. . . . . . . . . . 11
⊢ ((B = Nc y ∧ X = Nc z) → X =
Nc z) |
48 | 46, 47 | addceq12d 4392 |
. . . . . . . . . 10
⊢ ((B = Nc y ∧ X = Nc z) → ( Tc B
+c X) = ( Tc Nc y +c Nc z)) |
49 | 48 | 3adant1 973 |
. . . . . . . . 9
⊢ ((A = Nc x ∧ B = Nc y ∧ X = Nc z) → ( Tc B
+c X) = ( Tc Nc y +c Nc z)) |
50 | 44, 49 | eqeq12d 2367 |
. . . . . . . 8
⊢ ((A = Nc x ∧ B = Nc y ∧ X = Nc z) → ( Tc A = (
Tc B +c X) ↔ Tc
Nc x = ( Tc Nc y +c Nc z))) |
51 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (X = Nc z → (X =
Nc ℘1w ↔ Nc z = Nc ℘1w)) |
52 | 16 | eqnc 6128 |
. . . . . . . . . . 11
⊢ ( Nc z = Nc ℘1w ↔ z
≈ ℘1w) |
53 | 51, 52 | syl6bb 252 |
. . . . . . . . . 10
⊢ (X = Nc z → (X =
Nc ℘1w ↔ z
≈ ℘1w)) |
54 | 53 | exbidv 1626 |
. . . . . . . . 9
⊢ (X = Nc z → (∃w X = Nc ℘1w ↔ ∃w z ≈ ℘1w)) |
55 | 54 | 3ad2ant3 978 |
. . . . . . . 8
⊢ ((A = Nc x ∧ B = Nc y ∧ X = Nc z) → (∃w X = Nc ℘1w ↔ ∃w z ≈ ℘1w)) |
56 | 50, 55 | imbi12d 311 |
. . . . . . 7
⊢ ((A = Nc x ∧ B = Nc y ∧ X = Nc z) → (( Tc A = (
Tc B +c X) → ∃w X = Nc ℘1w) ↔ ( Tc Nc x = ( Tc
Nc y
+c Nc z) → ∃w z ≈ ℘1w))) |
57 | 42, 56 | mpbiri 224 |
. . . . . 6
⊢ ((A = Nc x ∧ B = Nc y ∧ X = Nc z) → ( Tc A = (
Tc B +c X) → ∃w X = Nc ℘1w)) |
58 | 57 | exlimiv 1634 |
. . . . 5
⊢ (∃z(A = Nc x ∧ B = Nc y ∧ X = Nc z) → ( Tc A = (
Tc B +c X) → ∃w X = Nc ℘1w)) |
59 | 58 | exlimivv 1635 |
. . . 4
⊢ (∃x∃y∃z(A = Nc x ∧ B = Nc y ∧ X = Nc z) → ( Tc A = (
Tc B +c X) → ∃w X = Nc ℘1w)) |
60 | 6, 59 | sylbi 187 |
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ∧ X ∈ NC ) → ( Tc
A = ( Tc B
+c X) → ∃w X = Nc ℘1w)) |
61 | 60 | imp 418 |
. 2
⊢ (((A ∈ NC ∧ B ∈ NC ∧ X ∈ NC ) ∧ Tc A = (
Tc B +c X)) → ∃w X = Nc ℘1w) |
62 | | df-rex 2621 |
. . 3
⊢ (∃c ∈ NC X = Tc
c ↔ ∃c(c ∈ NC ∧ X = Tc
c)) |
63 | | elncs 6120 |
. . . . . 6
⊢ (c ∈ NC ↔ ∃w c = Nc w) |
64 | 63 | anbi1i 676 |
. . . . 5
⊢ ((c ∈ NC ∧ X = Tc
c) ↔ (∃w c = Nc w ∧ X = Tc
c)) |
65 | | 19.41v 1901 |
. . . . 5
⊢ (∃w(c = Nc w ∧ X = Tc
c) ↔ (∃w c = Nc w ∧ X = Tc
c)) |
66 | 64, 65 | bitr4i 243 |
. . . 4
⊢ ((c ∈ NC ∧ X = Tc
c) ↔ ∃w(c = Nc w ∧ X = Tc
c)) |
67 | 66 | exbii 1582 |
. . 3
⊢ (∃c(c ∈ NC ∧ X = Tc
c) ↔ ∃c∃w(c = Nc w ∧ X = Tc
c)) |
68 | | excom 1741 |
. . . 4
⊢ (∃c∃w(c = Nc w ∧ X = Tc
c) ↔ ∃w∃c(c = Nc w ∧ X = Tc
c)) |
69 | | ncex 6118 |
. . . . . 6
⊢ Nc w ∈ V |
70 | | tceq 6159 |
. . . . . . . 8
⊢ (c = Nc w → Tc
c = Tc Nc w) |
71 | | vex 2863 |
. . . . . . . . 9
⊢ w ∈
V |
72 | 71 | tcnc 6226 |
. . . . . . . 8
⊢ Tc Nc w = Nc ℘1w |
73 | 70, 72 | syl6eq 2401 |
. . . . . . 7
⊢ (c = Nc w → Tc
c = Nc ℘1w) |
74 | 73 | eqeq2d 2364 |
. . . . . 6
⊢ (c = Nc w → (X =
Tc c ↔ X =
Nc ℘1w)) |
75 | 69, 74 | ceqsexv 2895 |
. . . . 5
⊢ (∃c(c = Nc w ∧ X = Tc
c) ↔ X = Nc ℘1w) |
76 | 75 | exbii 1582 |
. . . 4
⊢ (∃w∃c(c = Nc w ∧ X = Tc
c) ↔ ∃w X = Nc ℘1w) |
77 | 68, 76 | bitri 240 |
. . 3
⊢ (∃c∃w(c = Nc w ∧ X = Tc
c) ↔ ∃w X = Nc ℘1w) |
78 | 62, 67, 77 | 3bitri 262 |
. 2
⊢ (∃c ∈ NC X = Tc
c ↔ ∃w X = Nc ℘1w) |
79 | 61, 78 | sylibr 203 |
1
⊢ (((A ∈ NC ∧ B ∈ NC ∧ X ∈ NC ) ∧ Tc A = (
Tc B +c X)) → ∃c ∈ NC X = Tc
c) |