Step | Hyp | Ref
| Expression |
1 | | tccl 6161 |
. . . 4
⊢ (N ∈ NC → Tc
N ∈ NC ) |
2 | | dflec2 6211 |
. . . 4
⊢ ((M ∈ NC ∧ Tc N
∈ NC ) →
(M ≤c Tc N
↔ ∃q ∈ NC Tc N = (M
+c q))) |
3 | 1, 2 | sylan2 460 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c Tc N ↔ ∃q ∈ NC Tc N =
(M +c q))) |
4 | | elncs 6120 |
. . . . . . . 8
⊢ (M ∈ NC ↔ ∃a M = Nc a) |
5 | | elncs 6120 |
. . . . . . . 8
⊢ (N ∈ NC ↔ ∃b N = Nc b) |
6 | | elncs 6120 |
. . . . . . . 8
⊢ (q ∈ NC ↔ ∃c q = Nc c) |
7 | 4, 5, 6 | 3anbi123i 1140 |
. . . . . . 7
⊢ ((M ∈ NC ∧ N ∈ NC ∧ q ∈ NC ) ↔ (∃a M = Nc a ∧ ∃b N = Nc b ∧ ∃c q = Nc c)) |
8 | | eeeanv 1914 |
. . . . . . 7
⊢ (∃a∃b∃c(M = Nc a ∧ N = Nc b ∧ q = Nc c) ↔ (∃a M = Nc a ∧ ∃b N = Nc b ∧ ∃c q = Nc c)) |
9 | 7, 8 | bitr4i 243 |
. . . . . 6
⊢ ((M ∈ NC ∧ N ∈ NC ∧ q ∈ NC ) ↔ ∃a∃b∃c(M = Nc a ∧ N = Nc b ∧ q = Nc c)) |
10 | | eqcom 2355 |
. . . . . . . . . . 11
⊢ ( Nc ℘1b = ( Nc a +c Nc c) ↔ ( Nc a
+c Nc c) = Nc ℘1b) |
11 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ a ∈
V |
12 | 11 | ncelncsi 6122 |
. . . . . . . . . . . . 13
⊢ Nc a ∈ NC |
13 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ c ∈
V |
14 | 13 | ncelncsi 6122 |
. . . . . . . . . . . . 13
⊢ Nc c ∈ NC |
15 | | ncaddccl 6145 |
. . . . . . . . . . . . 13
⊢ (( Nc a ∈ NC ∧ Nc c ∈ NC ) → ( Nc a +c Nc c) ∈ NC
) |
16 | 12, 14, 15 | mp2an 653 |
. . . . . . . . . . . 12
⊢ ( Nc a
+c Nc c) ∈ NC |
17 | | ncseqnc 6129 |
. . . . . . . . . . . 12
⊢ (( Nc a
+c Nc c) ∈ NC → (( Nc a +c Nc c) = Nc ℘1b ↔ ℘1b ∈ ( Nc a
+c Nc c))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (( Nc a
+c Nc c) = Nc ℘1b ↔ ℘1b ∈ ( Nc a
+c Nc c)) |
19 | 10, 18 | bitri 240 |
. . . . . . . . . 10
⊢ ( Nc ℘1b = ( Nc a +c Nc c) ↔ ℘1b ∈ ( Nc a
+c Nc c)) |
20 | | eladdc 4399 |
. . . . . . . . . . 11
⊢ (℘1b ∈ ( Nc a
+c Nc c) ↔ ∃x ∈ Nc a∃y ∈ Nc c((x ∩ y) =
∅ ∧ ℘1b = (x ∪
y))) |
21 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ x ∈
V |
22 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ y ∈
V |
23 | 21, 22 | pw1equn 4332 |
. . . . . . . . . . . . . 14
⊢ (℘1b = (x ∪
y) ↔ ∃n∃m(b = (n ∪
m) ∧
x = ℘1n ∧ y = ℘1m)) |
24 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (x = ℘1n → (x
∈ Nc a ↔ ℘1n ∈ Nc a)) |
25 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (y = ℘1m → (y
∈ Nc c ↔ ℘1m ∈ Nc c)) |
26 | 24, 25 | bi2anan9 843 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((x = ℘1n ∧ y = ℘1m) → ((x
∈ Nc a ∧ y ∈ Nc c) ↔ (℘1n ∈ Nc a ∧ ℘1m ∈ Nc c))) |
27 | | ineq12 3453 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((x = ℘1n ∧ y = ℘1m) → (x
∩ y) = (℘1n ∩ ℘1m)) |
28 | 27 | eqeq1d 2361 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((x = ℘1n ∧ y = ℘1m) → ((x
∩ y) = ∅ ↔ (℘1n ∩ ℘1m) = ∅)) |
29 | 26, 28 | anbi12d 691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((x = ℘1n ∧ y = ℘1m) → (((x
∈ Nc a ∧ y ∈ Nc c) ∧ (x ∩
y) = ∅)
↔ ((℘1n ∈ Nc a ∧ ℘1m ∈ Nc c) ∧ (℘1n ∩ ℘1m) = ∅))) |
30 | | ncseqnc 6129 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ( Nc a ∈ NC → ( Nc a = Nc ℘1n ↔ ℘1n ∈ Nc a)) |
31 | 12, 30 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Nc a = Nc ℘1n ↔ ℘1n ∈ Nc a) |
32 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ n ∈
V |
33 | 32 | ncelncsi 6122 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ Nc n ∈ NC |
34 | | tceq 6159 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (p = Nc n → Tc
p = Tc Nc n) |
35 | 32 | tcnc 6226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ Tc Nc n = Nc ℘1n |
36 | 34, 35 | syl6eq 2401 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (p = Nc n → Tc
p = Nc ℘1n) |
37 | 36 | eqeq2d 2364 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (p = Nc n → ( Nc a = Tc
p ↔ Nc
a = Nc ℘1n)) |
38 | 37 | rspcev 2956 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (( Nc n ∈ NC ∧ Nc a = Nc ℘1n) → ∃p ∈ NC Nc a = Tc p) |
39 | 33, 38 | mpan 651 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Nc a = Nc ℘1n → ∃p ∈ NC Nc a = Tc p) |
40 | 31, 39 | sylbir 204 |
. . . . . . . . . . . . . . . . . . 19
⊢ (℘1n ∈ Nc a → ∃p ∈ NC Nc a = Tc p) |
41 | 40 | ad2antrr 706 |
. . . . . . . . . . . . . . . . . 18
⊢ (((℘1n ∈ Nc a ∧ ℘1m ∈ Nc c) ∧ (℘1n ∩ ℘1m) = ∅) →
∃p ∈ NC Nc a = Tc p) |
42 | 29, 41 | syl6bi 219 |
. . . . . . . . . . . . . . . . 17
⊢ ((x = ℘1n ∧ y = ℘1m) → (((x
∈ Nc a ∧ y ∈ Nc c) ∧ (x ∩
y) = ∅)
→ ∃p ∈ NC Nc a = Tc
p)) |
43 | 42 | 3adant1 973 |
. . . . . . . . . . . . . . . 16
⊢ ((b = (n ∪
m) ∧
x = ℘1n ∧ y = ℘1m) → (((x
∈ Nc a ∧ y ∈ Nc c) ∧ (x ∩
y) = ∅)
→ ∃p ∈ NC Nc a = Tc
p)) |
44 | 43 | exlimivv 1635 |
. . . . . . . . . . . . . . 15
⊢ (∃n∃m(b = (n ∪
m) ∧
x = ℘1n ∧ y = ℘1m) → (((x
∈ Nc a ∧ y ∈ Nc c) ∧ (x ∩
y) = ∅)
→ ∃p ∈ NC Nc a = Tc
p)) |
45 | 44 | com12 27 |
. . . . . . . . . . . . . 14
⊢ (((x ∈ Nc a ∧ y ∈ Nc c) ∧ (x ∩ y) =
∅) → (∃n∃m(b = (n ∪
m) ∧
x = ℘1n ∧ y = ℘1m) → ∃p ∈ NC Nc a = Tc p)) |
46 | 23, 45 | syl5bi 208 |
. . . . . . . . . . . . 13
⊢ (((x ∈ Nc a ∧ y ∈ Nc c) ∧ (x ∩ y) =
∅) → (℘1b = (x ∪
y) → ∃p ∈ NC Nc a = Tc p)) |
47 | 46 | expimpd 586 |
. . . . . . . . . . . 12
⊢ ((x ∈ Nc a ∧ y ∈ Nc c) → (((x
∩ y) = ∅ ∧ ℘1b = (x ∪
y)) → ∃p ∈ NC Nc a = Tc p)) |
48 | 47 | rexlimivv 2744 |
. . . . . . . . . . 11
⊢ (∃x ∈ Nc a∃y ∈ Nc c((x ∩ y) =
∅ ∧ ℘1b = (x ∪
y)) → ∃p ∈ NC Nc a = Tc p) |
49 | 20, 48 | sylbi 187 |
. . . . . . . . . 10
⊢ (℘1b ∈ ( Nc a
+c Nc c) → ∃p ∈ NC Nc a = Tc p) |
50 | 19, 49 | sylbi 187 |
. . . . . . . . 9
⊢ ( Nc ℘1b = ( Nc a +c Nc c) → ∃p ∈ NC Nc a = Tc p) |
51 | | tceq 6159 |
. . . . . . . . . . . . 13
⊢ (N = Nc b → Tc
N = Tc Nc b) |
52 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ b ∈
V |
53 | 52 | tcnc 6226 |
. . . . . . . . . . . . 13
⊢ Tc Nc b = Nc ℘1b |
54 | 51, 53 | syl6eq 2401 |
. . . . . . . . . . . 12
⊢ (N = Nc b → Tc
N = Nc ℘1b) |
55 | 54 | 3ad2ant2 977 |
. . . . . . . . . . 11
⊢ ((M = Nc a ∧ N = Nc b ∧ q = Nc c) → Tc
N = Nc ℘1b) |
56 | | addceq12 4386 |
. . . . . . . . . . . 12
⊢ ((M = Nc a ∧ q = Nc c) → (M
+c q) = ( Nc a
+c Nc c)) |
57 | 56 | 3adant2 974 |
. . . . . . . . . . 11
⊢ ((M = Nc a ∧ N = Nc b ∧ q = Nc c) → (M
+c q) = ( Nc a
+c Nc c)) |
58 | 55, 57 | eqeq12d 2367 |
. . . . . . . . . 10
⊢ ((M = Nc a ∧ N = Nc b ∧ q = Nc c) → ( Tc N =
(M +c q) ↔ Nc ℘1b = ( Nc a +c Nc c))) |
59 | | eqeq1 2359 |
. . . . . . . . . . . 12
⊢ (M = Nc a → (M =
Tc p ↔ Nc a = Tc
p)) |
60 | 59 | rexbidv 2636 |
. . . . . . . . . . 11
⊢ (M = Nc a → (∃p ∈ NC M = Tc
p ↔ ∃p ∈ NC Nc a = Tc p)) |
61 | 60 | 3ad2ant1 976 |
. . . . . . . . . 10
⊢ ((M = Nc a ∧ N = Nc b ∧ q = Nc c) → (∃p ∈ NC M = Tc
p ↔ ∃p ∈ NC Nc a = Tc p)) |
62 | 58, 61 | imbi12d 311 |
. . . . . . . . 9
⊢ ((M = Nc a ∧ N = Nc b ∧ q = Nc c) → (( Tc N =
(M +c q) → ∃p ∈ NC M = Tc
p) ↔ ( Nc
℘1b = ( Nc a +c Nc c) → ∃p ∈ NC Nc a = Tc p))) |
63 | 50, 62 | mpbiri 224 |
. . . . . . . 8
⊢ ((M = Nc a ∧ N = Nc b ∧ q = Nc c) → ( Tc N =
(M +c q) → ∃p ∈ NC M = Tc
p)) |
64 | 63 | exlimiv 1634 |
. . . . . . 7
⊢ (∃c(M = Nc a ∧ N = Nc b ∧ q = Nc c) → ( Tc N =
(M +c q) → ∃p ∈ NC M = Tc
p)) |
65 | 64 | exlimivv 1635 |
. . . . . 6
⊢ (∃a∃b∃c(M = Nc a ∧ N = Nc b ∧ q = Nc c) → ( Tc N =
(M +c q) → ∃p ∈ NC M = Tc
p)) |
66 | 9, 65 | sylbi 187 |
. . . . 5
⊢ ((M ∈ NC ∧ N ∈ NC ∧ q ∈ NC ) → ( Tc
N = (M
+c q) → ∃p ∈ NC M = Tc
p)) |
67 | 66 | 3expa 1151 |
. . . 4
⊢ (((M ∈ NC ∧ N ∈ NC ) ∧ q ∈ NC ) → ( Tc
N = (M
+c q) → ∃p ∈ NC M = Tc
p)) |
68 | 67 | rexlimdva 2739 |
. . 3
⊢ ((M ∈ NC ∧ N ∈ NC ) → (∃q ∈ NC Tc N =
(M +c q) → ∃p ∈ NC M = Tc
p)) |
69 | 3, 68 | sylbid 206 |
. 2
⊢ ((M ∈ NC ∧ N ∈ NC ) → (M
≤c Tc N → ∃p ∈ NC M = Tc
p)) |
70 | 69 | 3impia 1148 |
1
⊢ ((M ∈ NC ∧ N ∈ NC ∧ M ≤c Tc N)
→ ∃p ∈ NC M = Tc p) |