New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeltri | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeltr.1 | ⊢ A = B |
eqeltr.2 | ⊢ B ∈ C |
Ref | Expression |
---|---|
eqeltri | ⊢ A ∈ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltr.2 | . 2 ⊢ B ∈ C | |
2 | eqeltr.1 | . . 3 ⊢ A = B | |
3 | 2 | eleq1i 2416 | . 2 ⊢ (A ∈ C ↔ B ∈ C) |
4 | 1, 3 | mpbir 200 | 1 ⊢ A ∈ C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eqeltrri 2424 3eltr4i 2432 intab 3957 prex 4113 opkex 4114 idkex 4315 setswithex 4323 0cex 4393 nncex 4397 finex 4398 1cnnc 4409 preaddccan2lem1 4455 ltfinex 4465 ncfinex 4473 tfinex 4486 evenfinex 4504 oddfinex 4505 spfinex 4538 nulnnn 4557 phialllem1 4617 1stex 4740 swapex 4743 ssetex 4745 xpvv 4844 2ndex 5113 fvex 5340 idex 5505 1stfo 5506 2ndfo 5507 swapf1o 5512 ovex 5552 ins4ex 5800 si3ex 5807 cupex 5817 composeex 5821 disjex 5824 addcfnex 5825 funsex 5829 fnsex 5833 crossex 5851 pw1fnex 5853 domfnex 5871 ranfnex 5872 clos1ex 5877 clos1induct 5881 clos1basesuc 5883 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 partialex 5918 strictex 5919 weex 5920 erex 5921 enex 6032 enmap2lem1 6064 enmap1lem1 6070 enprmaplem1 6077 enprmaplem4 6080 ncsex 6112 lecex 6116 ltcex 6117 ncex 6118 muccl 6133 mucex 6134 0cnc 6139 nnnc 6147 tcex 6158 tcdi 6165 ceex 6175 ce0addcnnul 6180 ce0nn 6181 ceclb 6184 ce2 6193 sbthlem1 6204 tcfnex 6245 csucex 6260 nncdiv3lem2 6277 |
Copyright terms: Public domain | W3C validator |