New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opeqexb | GIF version |
Description: A class is a set iff it is equal to an ordered pair. (Contributed by Scott Fenton, 19-Apr-2021.) |
Ref | Expression |
---|---|
opeqexb | ⊢ (A ∈ V ↔ ∃x∃y A = 〈x, y〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opexb 4604 | . 2 ⊢ (〈 Proj1 A, Proj2 A〉 ∈ V ↔ ( Proj1 A ∈ V ∧ Proj2 A ∈ V)) | |
2 | opeq 4620 | . . 3 ⊢ A = 〈 Proj1 A, Proj2 A〉 | |
3 | 2 | eleq1i 2416 | . 2 ⊢ (A ∈ V ↔ 〈 Proj1 A, Proj2 A〉 ∈ V) |
4 | eeanv 1913 | . . 3 ⊢ (∃x∃y(x = Proj1 A ∧ y = Proj2 A) ↔ (∃x x = Proj1 A ∧ ∃y y = Proj2 A)) | |
5 | 2 | eqeq1i 2360 | . . . . 5 ⊢ (A = 〈x, y〉 ↔ 〈 Proj1 A, Proj2 A〉 = 〈x, y〉) |
6 | eqcom 2355 | . . . . 5 ⊢ (〈 Proj1 A, Proj2 A〉 = 〈x, y〉 ↔ 〈x, y〉 = 〈 Proj1 A, Proj2 A〉) | |
7 | opth 4603 | . . . . 5 ⊢ (〈x, y〉 = 〈 Proj1 A, Proj2 A〉 ↔ (x = Proj1 A ∧ y = Proj2 A)) | |
8 | 5, 6, 7 | 3bitri 262 | . . . 4 ⊢ (A = 〈x, y〉 ↔ (x = Proj1 A ∧ y = Proj2 A)) |
9 | 8 | 2exbii 1583 | . . 3 ⊢ (∃x∃y A = 〈x, y〉 ↔ ∃x∃y(x = Proj1 A ∧ y = Proj2 A)) |
10 | isset 2864 | . . . 4 ⊢ ( Proj1 A ∈ V ↔ ∃x x = Proj1 A) | |
11 | isset 2864 | . . . 4 ⊢ ( Proj2 A ∈ V ↔ ∃y y = Proj2 A) | |
12 | 10, 11 | anbi12i 678 | . . 3 ⊢ (( Proj1 A ∈ V ∧ Proj2 A ∈ V) ↔ (∃x x = Proj1 A ∧ ∃y y = Proj2 A)) |
13 | 4, 9, 12 | 3bitr4i 268 | . 2 ⊢ (∃x∃y A = 〈x, y〉 ↔ ( Proj1 A ∈ V ∧ Proj2 A ∈ V)) |
14 | 1, 3, 13 | 3bitr4i 268 | 1 ⊢ (A ∈ V ↔ ∃x∃y A = 〈x, y〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 〈cop 4562 Proj1 cproj1 4564 Proj2 cproj2 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 |
This theorem is referenced by: opeqex 4622 eliunxp 4822 dmsnn0 5065 |
Copyright terms: Public domain | W3C validator |