NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimakvg GIF version

Theorem elimakvg 4259
Description: Membership in a Kuratowski image under V. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
elimakvg (C V → (C (Ak V) ↔ yy, C A))
Distinct variable groups:   y,A   y,C
Allowed substitution hint:   V(y)

Proof of Theorem elimakvg
StepHypRef Expression
1 elimakg 4258 . 2 (C V → (C (Ak V) ↔ y V ⟪y, C A))
2 rexv 2874 . 2 (y V ⟪y, C Ayy, C A)
31, 2syl6bb 252 1 (C V → (C (Ak V) ↔ yy, C A))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541   wcel 1710  wrex 2616  Vcvv 2860  copk 4058  k cimak 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059  df-imak 4190
This theorem is referenced by:  elimakv  4261
  Copyright terms: Public domain W3C validator