New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimakvg | GIF version |
Description: Membership in a Kuratowski image under V. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elimakvg | ⊢ (C ∈ V → (C ∈ (A “k V) ↔ ∃y⟪y, C⟫ ∈ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimakg 4258 | . 2 ⊢ (C ∈ V → (C ∈ (A “k V) ↔ ∃y ∈ V ⟪y, C⟫ ∈ A)) | |
2 | rexv 2874 | . 2 ⊢ (∃y ∈ V ⟪y, C⟫ ∈ A ↔ ∃y⟪y, C⟫ ∈ A) | |
3 | 1, 2 | syl6bb 252 | 1 ⊢ (C ∈ V → (C ∈ (A “k V) ↔ ∃y⟪y, C⟫ ∈ A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 ⟪copk 4058 “k cimak 4180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 df-imak 4190 |
This theorem is referenced by: elimakv 4261 |
Copyright terms: Public domain | W3C validator |