NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimakg GIF version

Theorem elimakg 4258
Description: Membership in a Kuratowski image. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
elimakg (C V → (C (Ak B) ↔ y By, C A))
Distinct variable groups:   y,A   y,B   y,C
Allowed substitution hint:   V(y)

Proof of Theorem elimakg
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 opkeq2 4061 . . . 4 (x = C → ⟪y, x⟫ = ⟪y, C⟫)
21eleq1d 2419 . . 3 (x = C → (⟪y, x A ↔ ⟪y, C A))
32rexbidv 2636 . 2 (x = C → (y By, x Ay By, C A))
4 df-imak 4190 . 2 (Ak B) = {x y By, x A}
53, 4elab2g 2988 1 (C V → (C (Ak B) ↔ y By, C A))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wcel 1710  wrex 2616  copk 4058  k cimak 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059  df-imak 4190
This theorem is referenced by:  elimakvg  4259  elimak  4260
  Copyright terms: Public domain W3C validator