New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimak | GIF version |
Description: Membership in a Kuratowski image. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elimak.1 | ⊢ C ∈ V |
Ref | Expression |
---|---|
elimak | ⊢ (C ∈ (A “k B) ↔ ∃y ∈ B ⟪y, C⟫ ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimak.1 | . 2 ⊢ C ∈ V | |
2 | elimakg 4258 | . 2 ⊢ (C ∈ V → (C ∈ (A “k B) ↔ ∃y ∈ B ⟪y, C⟫ ∈ A)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C ∈ (A “k B) ↔ ∃y ∈ B ⟪y, C⟫ ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 ⟪copk 4058 “k cimak 4180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 df-imak 4190 |
This theorem is referenced by: opkelimagekg 4272 imacok 4283 elimaksn 4284 dfimak2 4299 dfuni3 4316 dfint3 4319 ndisjrelk 4324 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 nnc0suc 4413 nncaddccl 4420 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfinex 4465 ltfintrilem1 4466 ssfin 4471 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 vfinspss 4552 vfinspclt 4553 vfinncsp 4555 dfphi2 4570 dfop2lem1 4574 dfop2lem2 4575 dfop2 4576 dfproj12 4577 dfproj22 4578 phialllem1 4617 setconslem2 4733 setconslem3 4734 setconslem4 4735 setconslem6 4737 setconslem7 4738 df1st2 4739 dfswap2 4742 dfima2 4746 |
Copyright terms: Public domain | W3C validator |