New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elrint | GIF version |
Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
elrint | ⊢ (X ∈ (A ∩ ∩B) ↔ (X ∈ A ∧ ∀y ∈ B X ∈ y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . 2 ⊢ (X ∈ (A ∩ ∩B) ↔ (X ∈ A ∧ X ∈ ∩B)) | |
2 | elintg 3935 | . . 3 ⊢ (X ∈ A → (X ∈ ∩B ↔ ∀y ∈ B X ∈ y)) | |
3 | 2 | pm5.32i 618 | . 2 ⊢ ((X ∈ A ∧ X ∈ ∩B) ↔ (X ∈ A ∧ ∀y ∈ B X ∈ y)) |
4 | 1, 3 | bitri 240 | 1 ⊢ (X ∈ (A ∩ ∩B) ↔ (X ∈ A ∧ ∀y ∈ B X ∈ y)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 ∩ cin 3209 ∩cint 3927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-int 3928 |
This theorem is referenced by: elrint2 3969 |
Copyright terms: Public domain | W3C validator |